Homework set 8 — APPM5440 — Fall 2016

From the textbook: 3.6, 3.7.

Problem 1: Let X be a set with infinitely many members. We define a collection \mathcal{T} of subsets of X by saying that a set $\Omega \in \mathcal{T}$ if either $\Omega^{c} = X \setminus \Omega$ is finite, or if Ω is the empty set. Verify that \mathcal{T} is a topology on X. This topology is called the "co-finite" topology on X. Describe the closed sets.

Problem 2: Let X denote a finite set, and let \mathcal{T} be a metrizable topology on X. Prove that \mathcal{T} is the discrete topology on X.

Problem 3: Consider the set $X = \{a, b, c\}$, and the collection of subsets $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Is \mathcal{T} a topology? Is \mathcal{T} a metrizable topology?

Problem 4: Consider the integral equation

(*)
$$u(x) = \pi^2 \sin(x) + \frac{3}{2} \int_0^{\cos(x)} |x - y| \, u(y) \, dy$$

Prove that (*) has a unique solution in C([0,1]).