Comments on homework set 9 - APPM5440 — Fall 2016

Problem 4.1: Let K be a compact set and fix $x \notin K$. To prove that K^{c} is open (which is to say that K is closed) we need to construct an open set G such that $x \in G \subseteq K^{\mathrm{c}}$.

For every $y \in K$, pick disjoint open sets $G_{y} \ni x$ and $H_{y} \ni y$. Then $\left\{H_{y}\right\}_{y \in K}$ forms an open cover of K. Since K is compact, there is a finite subcover $\left\{H_{y_{j}}\right\}_{j=1}^{J}$. Now set

$$
G=\bigcap_{j=1}^{J} G_{j} .
$$

Clearly G is open (since its a finite intersection of open sets) and $x \in G$. Since G is also disjoint from every set $H_{y_{j}}$ in the finite open cover of K, it follows that $G \cap K=\emptyset$ (which is to say $\left.G \subseteq K^{\mathrm{c}}\right)$.

Problem 4.2: For the cantor set C we have $\bar{C}=\partial C=C$ and $C^{\circ}=\emptyset$.
Problem 4.3: Just apply the definitions.

Problem 4.5a: The connected subspaces of \mathbb{R} are the intervals.
Proof that any interval is connected: Let I be an interval, and suppose that $I=G_{1} \cup G_{2}$ where G_{1} and G_{2} are both open, and $G_{1} \cap G_{2}=\emptyset$.

Pick a point $t \in I$. The point belongs to either G_{1} or G_{2}. Say $t \in G_{1}$. Our claim is that then $G_{2} \cap(t, \infty)$ must be empty. Suppose not, then set $s=\inf G_{2} \cap(t, \infty)$. Since G_{1} is open, it is not possible that $s \in G_{1}$ (if $s \in G_{1}$, there would be $\varepsilon>0$ such that $B_{\varepsilon}(t) \subset G_{1}$ and then $\left.\inf G_{2} \cap(t, \infty) \geq s+\varepsilon\right)$. Since G_{2} is open, it not possible that $s \in G_{2}$ (if $s \in G_{2}$, there would be $\varepsilon>0$ such that $B_{\varepsilon}(t) \subset G_{2}$ and then $\left.\inf G_{2} \cap(t, \infty) \leq s-\varepsilon\right)$. Therefore $s \notin I$, which is impossible.

The proof that $G_{2} \cap(-\infty, t)$ must be empty is analogous. It follows that G_{2} must be empty.

Proof that any non-interval is not connected: Let I be a subset of \mathbb{R} that is not an interval. Then there is a point $t \notin I$ such that the two sets

$$
G_{1}=(-\infty, t) \cap I, \quad G_{2}=(t, \infty) \cap I
$$

are both non-empty. Both G_{1} and G_{2} are open in the subspace topology (by definition), they are non-intersecting, and $I=G_{1} \cup G_{2}$.

Problem 1: Set $X=\mathbb{R}^{2}$ and $Y=\mathbb{R}$, and define $f: X \rightarrow Y$ by setting $f\left(\left[x_{1}, x_{2}\right]\right)=x_{1}$. Prove that f is continuous. Prove that f is open. Prove that f does not necessarily map closed sets to closed sets.

Hint: That f is continuous is very easy to prove.
Let G be an open set in X. Pick $t \in f(G)$. There is some $x \in G$ such that $t=f(x)$. Since G is open, there is an $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq G$. But then $(t-\varepsilon, t+\varepsilon)=f\left(B_{\varepsilon}\right) \subseteq f(G)$ so $f(G)$ is open.

Consider the set $F=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} x_{2}=1\right\}$. Then F is closed. But $f(F)=(-\infty, 0) \cup(0, \infty)$ which is not closed.

Problem 2: Prove that the co-finite topology is first countable if and only if X is countable.

Hint: Read the definitions carefully - there is nothing tricky about this question.
Problem 3: Prove that the co-finite topology on \mathbb{R} weaker than the standard topology.
Hint: Note that all you need to do is to demonstrate that any set that is open in the cofinite topology is also open in the standard topology.

