Homework set 10 — APPM5440 — Fall 2016

5.1, 5.3, 5.4, 5.5 (feel free to assume that k is non-negative), 5.7, 5.8.

Problem 1: Set $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$, and let $A \in \mathcal{B}(X, Y)$. Let

$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}	•••	a_{1n}
a_{21}	a_{22}	•••	a_{2n}
:	÷		÷
a_{m1}	a_{m2}	•••	a_{mn}

denote the representation of A in the standard basis.

- (a) Equip X and Y with the ℓ^1 norms. Compute ||A||.
- (b) Equip X and Y with the ℓ^2 norms. Compute ||A||.
- (c) Equip X and Y with the ℓ^{∞} norms. Compute ||A||.

Problem 2: Suppose that X is a NLS and that Y is a Banach space. Let Ω be a dense subspace of X, and let

$$T: \Omega \to Y$$

be a linear function such that

$$M = \sup_{x \in \Omega, \ x \neq 0} \frac{||Tx||}{||x||} < \infty.$$

In other words, M is the norm of T, viewed as a map from Ω . Prove that there exists a unique linear map $\overline{T}: X \to Y$ such that $\overline{T}x = Tx$ for every $x \in \Omega$. Prove that $||\overline{T}|| = M$.