Hints for homework set 11 - APPM5440 — Fall 2016

Problems 5.11 and 5.12: Should be fairly straight-forward.
Problem 5.13: (a) $\|A\|=\max _{n}\left|\lambda_{n}\right|,\|N\|=1$.
(b) $\exp (\Lambda t)=\left[\begin{array}{cccc}e^{\lambda_{1} t} & 0 & 0 & \cdots \\ 0 & e^{\lambda_{2} t} & 0 & \cdots \\ 0 & 0 & e^{\lambda_{2} t} & \cdots \\ \vdots & \vdots & \vdots & \end{array}\right]$.

For N, observe that $N^{n}=0$ so the defining sum is finite:

$$
\exp (N t)=I+t N+\frac{1}{2} t^{2} n^{2}+\cdots \frac{1}{(n-1)!} t^{n-1} N^{n-1}
$$

Work out for yourself what N^{j} looks like!
Problem 5.15(a): You can look this proof up in many places on the web.
Problem 5.17: Define $A_{n}=\sum_{j=0}^{n} K^{j}$. Then prove that in norm, you have both that $(I-K) A_{n} \rightarrow$ 0 and that $A_{n}(I-K) \rightarrow 0$.

Problem 1: Hmm, this is just 5.15(a). My mistake ...

Problem 2: Prove that $\left\|T_{n}\right\|=1 / \sqrt{n}$. Once you do that, it follows immediately that $T_{n} \rightarrow 0$ in both norm and strongly.

