## Homework set 12 - APPM5440 - Fall 2016

Problem 1: Let $X$ denote the linear space of polynomials of degree 2 or less on $I=[0,1]$. For $f \in X$, set $\|f\|=\sup _{x \in I}|f(x)|$. For $f \in X$, define

$$
\varphi_{1}(f)=\int_{0}^{1} f(x) d x, \quad \varphi_{2}(f)=f(0), \quad \varphi_{3}(f)=f^{\prime}(1 / 2), \quad \varphi_{4}(f)=f^{\prime}(1 / 3)
$$

Prove that $\varphi_{j} \in X^{*}$ for $j=1,2,3,4$. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$ forms a basis for $X^{*}$. Prove that $\left\{\varphi_{1}, \varphi_{2}, \varphi_{4}\right\}$ does not form a basis for $X^{*}$.

Hint: Any $f \in X$ can be written $f(x)=a+b x+c x^{2}$ for unique $a, b$, and $c$.

Problem 2: Let $X=\ell^{2}$. Recall from class that every $\varphi \in X^{*}$ is of the form $\varphi(x)=\sum x_{n} y_{n}$ for some $y \in X$. Set $D=\left\{x \in \ell^{2}:\|x\|=1\right\}$. Prove that the weak closure of $D$ is the closed unit ball in $\ell^{2}$. (Hint: To prove that the closed unit ball is contained in the weak closure of $D$, you can for any element $x$ such that $\|x\|<1$ explicitly construct a sequence $\left(x^{(n)}\right)_{n=1}^{\infty} \subset D$ that weakly converges to $x$, such that $\left\|x^{(n)}\right\|=1$.)

Set $Y=\ell^{3}$. What is $Y^{*}$ ? Prove that the weak closure of the surface of the unit ball in $\ell^{3}$ is the closed unit ball in $\ell^{3}$.

Problem 3: Consider the space $X=\ell^{2}$ and let $T \in \mathcal{B}(X)$ be a compact operator such that $\operatorname{ker}(T)=\{0\}$. Prove that $\operatorname{ran}(T)$ is not closed.

