Homework set 13 — APPM5440 — Fall 2016

Problem 1: Let X be a normed linear space, let M be a closed subspace, and let \hat{x} be an element not contained in M. Set

$$d = \operatorname{dist}(M, \hat{x}) = \inf_{y \in M} ||y - \hat{x}||.$$

Prove that d > 0. Prove that there exists an element $\varphi \in X^*$ such that $\varphi(\hat{x}) = 1$, $\varphi(y) = 0$ for $y \in M$, and $||\varphi|| = 1/d$.

Hint: Set $Z = \text{Span}(M, \hat{x})$. Prove that any $z \in Z$ can be written $z = y + \alpha \hat{x}$ for a unique $\alpha \in \mathbb{R}$ and a unique vector $y \in M$. Define ψ as a suitable functional on Z, and then extend it to X using the Hahn-Banach theorem.

Problem 2: Let X be a normed linear space with a linear subspace M. Prove that the weak closure of M equals the closure of M in the norm topology. *Hint:* Use Problem 3.

Problem 3: Prove that the following statements follow from the Hahn-Banach theorem:

- (a) For any $x \in X$, there is a $\varphi \in X^*$ such that $||\varphi|| = 1$ and $\varphi(x) = ||x||$.
- (b) For any $x \in X$, $||x|| = \sup_{||\varphi||=1} |\varphi(x)|$.
- (c) If $x, y \in X$ and $x \neq y$, there is a $\varphi \in X^*$ such that $\varphi(x) \neq \varphi(y)$.
- (d) For $x \in X$, define $F_x \in X^{**}$ by setting $F_x(\varphi) = \varphi(x)$. Prove that the map $x \mapsto F_x$ is a linear isometry from X to X^{**} .

Note that we did this in class — try to repeat the proof without looking at the notes! (We did not prove that the map $x \mapsto F_x$ is linear, you need to do this yourself.)

Problem 4: (Lax equivalence) Let X and Y be Banach spaces, let $A \in \mathcal{B}(X, Y)$ be an operator with a continuous inverse, let $f \in Y$, and consider the equation

$$A u = f.$$

Now suppose that we have "some mechanism" for approximating the equation to any given precision. In other words, given $\varepsilon > 0$, we can construct A_{ε} that approximates A, and f_{ε} that approximates f, and such that the equation

$$A_{\varepsilon} u_{\varepsilon} = f_{\varepsilon}$$

can be solved. (Typically, A_{ε} is a finite dimensional operator, so that the approximate equation can be solved by solving a finite system of linear algebraic equations.) We say that

- The approximation is *consistent* if $A_{\varepsilon} \to A$ strongly.
- The approximation is *stable* if there is an $M < \infty$ such that $||A_{\varepsilon}^{-1}|| \leq M$ for all $\varepsilon > 0$.
- The approximation is *convergent* if $u_{\varepsilon} \to u$ whenever $f_{\varepsilon} \to f$ (in norm).

Suppose that the approximation scheme is consistent. Prove that then:

The scheme is convergent \Leftrightarrow The scheme is stable

Hint: The solution is in the text book, but please try it yourself before looking!

Note: In practice, variations of this result are often used in the context of approximating partial differential equations via, e.g., finite elements or finite differences. In this case, the operator is not bounded — this assumption can be done away with.