
Homework set 13 — APPM5440 — Fall 2016

Problem 1: Let X be a normed linear space, let M be a closed subspace, and let x̂ be an element
not contained in M . Set

d = dist(M, x̂) = inf
y∈M
||y − x̂||.

Prove that d > 0. Prove that there exists an element ϕ ∈ X∗ such that ϕ(x̂) = 1, ϕ(y) = 0 for
y ∈M , and ||ϕ|| = 1/d.

Hint: Set Z = Span(M, x̂). Prove that any z ∈ Z can be written z = y + α x̂ for a unique α ∈ R
and a unique vector y ∈M . Define ψ as a suitable functional on Z, and then extend it to X using
the Hahn-Banach theorem.

Solution:

First we prove that d > 0. Suppose M is a closed linear subspace, and that x is a point such
that dist(M,x) = 0. Then there are xn ∈ M such that lim ||xn − x|| = 0. Since M is closed and
xn → x, we must have x ∈M . Since x̂ /∈M , it follows that d > 0.

Set Z = Span(M, x̂).

Prove that any z ∈ Z can be written z = y + α x̂ for a unique α ∈ R and a unique vector y ∈M .
(This is not hard.)

Define for z ∈ Z the functional ψ via ψ(z) = α, where α is the unique number such that z = y+αx̂.
Then ψ(x̂) = 1 and ψ(y) = 0 for every y ∈M .

We will now prove that the norm of ψ viewed as a functional on Z equals 1/d. To this end, set

C = sup
z∈Z, z 6=0

|ϕ(z)|
||z||

.

We then need to prove that C = 1/d. First observe that for any z ∈ Z\M we have

||z|| = ||y + αx̂|| = |α| || 1
α
y + x̂|| ≥ |α| d.

(Observe that || 1αy+ x̂|| ≥ d since (1/α)y ∈M and the distance between any element in M and x̂
is at least d.) It follows that

|ϕ(z)| = |α| ≤ ||z||
d
.

This shows that C ≤ 1/d. To prove the opposite inequality, pick yn ∈M such that

lim
n→∞

||x̂− yn|| = d.

Set zn = x̂− yn. Then

C ≥ lim
n→∞

|ϕ(zn)|
||zn||

= lim
n→∞

1

||zn||
=

1

d
.

Finally, invoke the Hahn-Banach to assert the existence of an extension of ψ to all of X satisfying
all requirements.
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Problem 2: Let X be a normed linear space with a linear subspace M . Prove that the weak
closure of M equals the closure of M in the norm topology. Hint: Use Problem 3.

Solution:

Since the norm closure of any set is contained in the weak closure, all we need to prove is that any
point not in the norm closure is also not in the weak closure.

Suppose x̂ /∈ M̄ . From Problem 3, we know that there exists a functional ϕ ∈ X∗ such that
ϕ(x̂ − y) = 1 for any vector y ∈ M̄ . Since M is a subset of M̄ , this shows that there can be no
sequence in M that converges weakly to x̂.
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Problem 3: Prove that the following statements follow from the Hahn-Banach theorem:

(a) For any x ∈ X, there is a ϕ ∈ X∗ such that ||ϕ|| = 1 and ϕ(x) = ||x||.

(b) For any x ∈ X, ||x|| = sup||ϕ||=1 |ϕ(x)|.

(c) If x, y ∈ X and x 6= y, there is a ϕ ∈ X∗ such that ϕ(x) 6= ϕ(y).

(d) For x ∈ X, define Fx ∈ X∗∗ by setting Fx(ϕ) = ϕ(x).
Prove that the map x 7→ Fx is a linear isometry from X to X∗∗.

Solution:

. . . see class notes . . .
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Problem 4: (Lax equivalence) Let X and Y be Banach spaces, let A ∈ B(X,Y ) be an operator
with a continuous inverse, let f ∈ Y , and consider the equation

Au = f.

Now suppose that we have “some mechanism” for approximating the equation to any given pre-
cision. In other words, given ε > 0, we can construct Aε that approximates A, and fε that
approximates f , and such that the equation

Aε uε = fε

can be solved. (Typically, Aε is a finite dimensional operator, so that the approximate equation
can be solved by solving a finite system of linear algebraic equations.) We say that

• The approximation is consistent if Aε → A strongly.
• The approximation is stable if there is an M <∞ such that ||A−1ε || ≤M for all ε > 0.
• The approximation is convergent if uε → u whenever fε → f (in norm).

Suppose that the approximation scheme is consistent. Prove that then:

The scheme is convergent ⇔ The scheme is stable

Hint: The solution is in the text book, but please try it yourself before looking!

Note: In practice, variations of this result are often used in the context of approximating partial
differential equations via, e.g., finite elements or finite differences. In this case, the operator is not
bounded — this assumption can be done away with.

Solution:

⇒ Assume that the scheme is stable. Then

u− uε = A−1ε (Aεu− fε) = A−1ε (Aεu−Au+ f − fε).
Consequently,

‖u− uε‖ ≤ ‖A−1ε ‖
(
‖Aεu−Au‖+ ‖f − fε‖

)
→ 0

as ε→ 0.

⇐ Assume that Aε is not stable. We will build two sequences of vectors (un) and (fn) such that
fn → 0 in norm, but un = A−1εn fn does not converge to zero, where (εn) is a sequence converging
to zero. (In other words, we construct approximations to the solution u = 0 of Au = 0.)

Since Aε is not stable, there is a sequence of unit vectors (vn) and a sequence of (εn) such that
limn εn = 0 and ‖A−1εn vn‖ → ∞.

Define
fn =

vn

‖A−1εn vn‖
.

Then ‖fn‖ → 0, so (fn) does indeed converge in norm to 0. Moreover, set un = A−1εn fn, so that un
is the solution to Aεnun = fn. Then (with u = 0, of course) we have

‖u− un‖ = ‖un‖ = ‖A−1εn fn‖ =

∥∥∥∥ A−1εn vn

‖A−1εn vn‖

∥∥∥∥ = 1.

In other words, the discretization is not convergent.


