Homework set 13 - APPM5440 — Fall 2016

Problem 1: Let X be a normed linear space, let M be a closed subspace, and let \hat{x} be an element not contained in M. Set

$$
d=\operatorname{dist}(M, \hat{x})=\inf _{y \in M}\|y-\hat{x}\| .
$$

Prove that $d>0$. Prove that there exists an element $\varphi \in X^{*}$ such that $\varphi(\hat{x})=1, \varphi(y)=0$ for $y \in M$, and $\|\varphi\|=1 / d$.

Hint: Set $Z=\operatorname{Span}(M, \hat{x})$. Prove that any $z \in Z$ can be written $z=y+\alpha \hat{x}$ for a unique $\alpha \in \mathbb{R}$ and a unique vector $y \in M$. Define ψ as a suitable functional on Z, and then extend it to X using the Hahn-Banach theorem.

First we prove that $d>0$. Suppose M is a closed linear subspace, and that x is a point such that $\operatorname{dist}(M, x)=0$. Then there are $x_{n} \in M$ such that $\lim \left\|x_{n}-x\right\|=0$. Since M is closed and $x_{n} \rightarrow x$, we must have $x \in M$. Since $\hat{x} \notin M$, it follows that $d>0$.

Set $Z=\operatorname{Span}(M, \hat{x})$.

Prove that any $z \in Z$ can be written $z=y+\alpha \hat{x}$ for a unique $\alpha \in \mathbb{R}$ and a unique vector $y \in M$. (This is not hard.)

Define for $z \in Z$ the functional ψ via $\psi(z)=\alpha$, where α is the unique number such that $z=y+\alpha \hat{x}$. Then $\psi(\hat{x})=1$ and $\psi(y)=0$ for every $y \in M$.

We will now prove that the norm of ψ viewed as a functional on Z equals $1 / d$. To this end, set

$$
C=\sup _{z \in Z, z \neq 0} \frac{|\varphi(z)|}{\|z\|}
$$

We then need to prove that $C=1 / d$. First observe that for any $z \in Z \backslash M$ we have

$$
\|z\|=\|y+\alpha \hat{x}\|=|\alpha|\left\|\frac{1}{\alpha} y+\hat{x}\right\| \geq|\alpha| d .
$$

(Observe that $\left\|\frac{1}{\alpha} y+\hat{x}\right\| \geq d$ since $(1 / \alpha) y \in M$ and the distance between any element in M and \hat{x} is at least d.) It follows that

$$
|\varphi(z)|=|\alpha| \leq \frac{\|z\|}{d} .
$$

This shows that $C \leq 1 / d$. To prove the opposite inequality, pick $y_{n} \in M$ such that

$$
\lim _{n \rightarrow \infty}\left\|\hat{x}-y_{n}\right\|=d
$$

Set $z_{n}=\hat{x}-y_{n}$. Then

$$
C \geq \lim _{n \rightarrow \infty} \frac{\left|\varphi\left(z_{n}\right)\right|}{\left\|z_{n}\right\|}=\lim _{n \rightarrow \infty} \frac{1}{\left\|z_{n}\right\|}=\frac{1}{d} .
$$

Finally, invoke the Hahn-Banach to assert the existence of an extension of ψ to all of X satisfying all requirements.

Problem 2: Let X be a normed linear space with a linear subspace M. Prove that the weak closure of M equals the closure of M in the norm topology. Hint: Use Problem 3.

Solution:

Since the norm closure of any set is contained in the weak closure, all we need to prove is that any point not in the norm closure is also not in the weak closure.

Suppose $\hat{x} \notin \bar{M}$. From Problem 3, we know that there exists a functional $\varphi \in X^{*}$ such that $\varphi(\hat{x}-y)=1$ for any vector $y \in \bar{M}$. Since M is a subset of \bar{M}, this shows that there can be no sequence in M that converges weakly to \hat{x}.

Problem 3: Prove that the following statements follow from the Hahn-Banach theorem:
(a) For any $x \in X$, there is a $\varphi \in X^{*}$ such that $\|\varphi\|=1$ and $\varphi(x)=\|x\|$.
(b) For any $x \in X,\|x\|=\sup _{\|\varphi\|=1}|\varphi(x)|$.
(c) If $x, y \in X$ and $x \neq y$, there is a $\varphi \in X^{*}$ such that $\varphi(x) \neq \varphi(y)$.
(d) For $x \in X$, define $F_{x} \in X^{* *}$ by setting $F_{x}(\varphi)=\varphi(x)$.

Prove that the map $x \mapsto F_{x}$ is a linear isometry from X to $X^{* *}$.
... see class notes ...

Problem 4: (Lax equivalence) Let X and Y be Banach spaces, let $A \in \mathcal{B}(X, Y)$ be an operator with a continuous inverse, let $f \in Y$, and consider the equation

$$
A u=f
$$

Now suppose that we have "some mechanism" for approximating the equation to any given precision. In other words, given $\varepsilon>0$, we can construct A_{ε} that approximates A, and f_{ε} that approximates f, and such that the equation

$$
A_{\varepsilon} u_{\varepsilon}=f_{\varepsilon}
$$

can be solved. (Typically, A_{ε} is a finite dimensional operator, so that the approximate equation can be solved by solving a finite system of linear algebraic equations.) We say that

- The approximation is consistent if $A_{\varepsilon} \rightarrow A$ strongly.
- The approximation is stable if there is an $M<\infty$ such that $\left\|A_{\varepsilon}^{-1}\right\| \leq M$ for all $\varepsilon>0$.
- The approximation is convergent if $u_{\varepsilon} \rightarrow u$ whenever $f_{\varepsilon} \rightarrow f$ (in norm).

Suppose that the approximation scheme is consistent. Prove that then:

$$
\text { The scheme is convergent } \Leftrightarrow \text { The scheme is stable }
$$

Hint: The solution is in the text book, but please try it yourself before looking!
Note: In practice, variations of this result are often used in the context of approximating partial differential equations via, e.g., finite elements or finite differences. In this case, the operator is not bounded - this assumption can be done away with.

Solution:

Assume that the scheme is stable. Then

$$
u-u_{\varepsilon}=A_{\varepsilon}^{-1}\left(A_{\varepsilon} u-f_{\varepsilon}\right)=A_{\varepsilon}^{-1}\left(A_{\varepsilon} u-A u+f-f_{\varepsilon}\right)
$$

Consequently,

$$
\left\|u-u_{\varepsilon}\right\| \leq\left\|A_{\varepsilon}^{-1}\right\|\left(\left\|A_{\varepsilon} u-A u\right\|+\left\|f-f_{\varepsilon}\right\|\right) \rightarrow 0
$$

as $\varepsilon \rightarrow 0$.
\Leftarrow Assume that A_{ε} is not stable. We will build two sequences of vectors $\left(u_{n}\right)$ and $\left(f_{n}\right)$ such that $f_{n} \rightarrow 0$ in norm, but $u_{n}=A_{\varepsilon_{n}}^{-1} f_{n}$ does not converge to zero, where $\left(\varepsilon_{n}\right)$ is a sequence converging to zero. (In other words, we construct approximations to the solution $u=0$ of $A u=0$.)

Since A_{ε} is not stable, there is a sequence of unit vectors $\left(v_{n}\right)$ and a sequence of $\left(\varepsilon_{n}\right)$ such that $\lim _{n} \varepsilon_{n}=0$ and $\left\|A_{\varepsilon_{n}}^{-1} v_{n}\right\| \rightarrow \infty$.

Define

$$
f_{n}=\frac{v_{n}}{\left\|A_{\varepsilon_{n}}^{-1} v_{n}\right\|}
$$

Then $\left\|f_{n}\right\| \rightarrow 0$, so $\left(f_{n}\right)$ does indeed converge in norm to 0 . Moreover, set $u_{n}=A_{\varepsilon_{n}}^{-1} f_{n}$, so that u_{n} is the solution to $A_{\varepsilon_{n}} u_{n}=f_{n}$. Then (with $u=0$, of course) we have

$$
\left\|u-u_{n}\right\|=\left\|u_{n}\right\|=\left\|A_{\varepsilon_{n}}^{-1} f_{n}\right\|=\left\|\frac{A_{\varepsilon_{n}}^{-1} v_{n}}{\left\|A_{\varepsilon_{n}}^{-1} v_{n}\right\|}\right\|=1
$$

In other words, the discretization is not convergent.

