Homework set 13 — APPM5440 — Fall 2016

Problem 1: Let X be a normed linear space, let M be a closed subspace, and let \hat{x} be an element not contained in M. Set

$$d = \operatorname{dist}(M, \hat{x}) = \inf_{y \in M} ||y - \hat{x}||.$$

Prove that d > 0. Prove that there exists an element $\varphi \in X^*$ such that $\varphi(\hat{x}) = 1$, $\varphi(y) = 0$ for $y \in M$, and $||\varphi|| = 1/d$.

Hint: Set $Z = \text{Span}(M, \hat{x})$. Prove that any $z \in Z$ can be written $z = y + \alpha \hat{x}$ for a unique $\alpha \in \mathbb{R}$ and a unique vector $y \in M$. Define ψ as a suitable functional on Z, and then extend it to X using the Hahn-Banach theorem.

- Solution: –

First we prove that d > 0. Suppose M is a closed linear subspace, and that x is a point such that $\operatorname{dist}(M, x) = 0$. Then there are $x_n \in M$ such that $\lim ||x_n - x|| = 0$. Since M is closed and $x_n \to x$, we must have $x \in M$. Since $\hat{x} \notin M$, it follows that d > 0.

Set $Z = \operatorname{Span}(M, \hat{x})$.

Prove that any $z \in Z$ can be written $z = y + \alpha \hat{x}$ for a unique $\alpha \in \mathbb{R}$ and a unique vector $y \in M$. (This is not hard.)

Define for $z \in Z$ the functional ψ via $\psi(z) = \alpha$, where α is the unique number such that $z = y + \alpha \hat{x}$. Then $\psi(\hat{x}) = 1$ and $\psi(y) = 0$ for every $y \in M$.

We will now prove that the norm of ψ viewed as a functional on Z equals 1/d. To this end, set

$$C = \sup_{z \in Z, \ z \neq 0} \frac{|\varphi(z)|}{||z||}.$$

We then need to prove that C = 1/d. First observe that for any $z \in Z \setminus M$ we have

$$||z|| = ||y + \alpha \hat{x}|| = |\alpha| ||\frac{1}{\alpha}y + \hat{x}|| \ge |\alpha| d.$$

(Observe that $||\frac{1}{\alpha}y + \hat{x}|| \ge d$ since $(1/\alpha)y \in M$ and the distance between any element in M and \hat{x} is at least d.) It follows that

$$|\varphi(z)| = |\alpha| \le \frac{||z||}{d}.$$

This shows that $C \leq 1/d$. To prove the opposite inequality, pick $y_n \in M$ such that

$$\lim_{n \to \infty} ||\hat{x} - y_n|| = d.$$

Set $z_n = \hat{x} - y_n$. Then

$$C \ge \lim_{n \to \infty} \frac{|\varphi(z_n)|}{||z_n||} = \lim_{n \to \infty} \frac{1}{||z_n||} = \frac{1}{d}.$$

Finally, invoke the Hahn-Banach to assert the existence of an extension of ψ to all of X satisfying all requirements.

Problem 2: Let X be a normed linear space with a linear subspace M. Prove that the weak closure of M equals the closure of M in the norm topology. *Hint:* Use Problem 3.

Since the norm closure of any set is contained in the weak closure, all we need to prove is that any point *not* in the norm closure is also not in the weak closure.

Suppose $\hat{x} \notin \overline{M}$. From Problem 3, we know that there exists a functional $\varphi \in X^*$ such that $\varphi(\hat{x} - y) = 1$ for any vector $y \in \overline{M}$. Since M is a subset of \overline{M} , this shows that there can be no sequence in M that converges weakly to \hat{x} .

Problem 3: Prove that the following statements follow from the Hahn-Banach theorem:

- (a) For any $x \in X$, there is a $\varphi \in X^*$ such that $||\varphi|| = 1$ and $\varphi(x) = ||x||$.
- (b) For any $x \in X$, $||x|| = \sup_{||\varphi||=1} |\varphi(x)|$.
- (c) If $x, y \in X$ and $x \neq y$, there is a $\varphi \in X^*$ such that $\varphi(x) \neq \varphi(y)$.
- (d) For $x \in X$, define $F_x \in X^{**}$ by setting $F_x(\varphi) = \varphi(x)$. Prove that the map $x \mapsto F_x$ is a linear isometry from X to X^{**} .

 \dots see class notes \dots

Problem 4: (Lax equivalence) Let X and Y be Banach spaces, let $A \in \mathcal{B}(X, Y)$ be an operator with a continuous inverse, let $f \in Y$, and consider the equation

$$A u = f.$$

Now suppose that we have "some mechanism" for approximating the equation to any given precision. In other words, given $\varepsilon > 0$, we can construct A_{ε} that approximates A, and f_{ε} that approximates f, and such that the equation

$$A_{\varepsilon} \, u_{\varepsilon} = f_{\varepsilon}$$

can be solved. (Typically, A_{ε} is a finite dimensional operator, so that the approximate equation can be solved by solving a finite system of linear algebraic equations.) We say that

- The approximation is consistent if $A_{\varepsilon} \to A$ strongly.
- The approximation is *stable* if there is an $M < \infty$ such that $||A_{\varepsilon}^{-1}|| \le M$ for all $\varepsilon > 0$.
- The approximation is *convergent* if $u_{\varepsilon} \to u$ whenever $f_{\varepsilon} \to f$ (in norm).

Suppose that the approximation scheme is consistent. Prove that then:

The scheme is convergent \Leftrightarrow The scheme is stable

Hint: The solution is in the text book, but please try it yourself before looking!

Note: In practice, variations of this result are often used in the context of approximating partial differential equations via, e.g., finite elements or finite differences. In this case, the operator is not bounded — this assumption can be done away with.

- Solution: -

 \Rightarrow Assume that the scheme is stable. Then

$$u - u_{\varepsilon} = A_{\varepsilon}^{-1}(A_{\varepsilon}u - f_{\varepsilon}) = A_{\varepsilon}^{-1}(A_{\varepsilon}u - Au + f - f_{\varepsilon}).$$

Consequently,

$$\|u - u_{\varepsilon}\| \le \|A_{\varepsilon}^{-1}\| \left(\|A_{\varepsilon}u - Au\| + \|f - f_{\varepsilon}\| \right) \to 0$$

as $\varepsilon \to 0$.

 \Leftarrow Assume that A_{ε} is not stable. We will build two sequences of vectors (u_n) and (f_n) such that $f_n \to 0$ in norm, but $u_n = A_{\varepsilon_n}^{-1} f_n$ does not converge to zero, where (ε_n) is a sequence converging to zero. (In other words, we construct approximations to the solution u = 0 of Au = 0.)

Since A_{ε} is not stable, there is a sequence of unit vectors (v_n) and a sequence of (ε_n) such that $\lim_n \varepsilon_n = 0$ and $||A_{\varepsilon_n}^{-1}v_n|| \to \infty$.

Define

$$f_n = \frac{v_n}{\|A_{\varepsilon_n}^{-1} v_n\|}$$

Then $||f_n|| \to 0$, so (f_n) does indeed converge in norm to 0. Moreover, set $u_n = A_{\varepsilon_n}^{-1} f_n$, so that u_n is the solution to $A_{\varepsilon_n} u_n = f_n$. Then (with u = 0, of course) we have

$$||u - u_n|| = ||u_n|| = ||A_{\varepsilon_n}^{-1} f_n|| = \left\|\frac{A_{\varepsilon_n}^{-1} v_n}{||A_{\varepsilon_n}^{-1} v_n||}\right\| = 1.$$

In other words, the discretization is not convergent.