
Solution/hints for homework set 14 — APPM5440 — Fall 2016

6.1: Let M be the closed convex set in a Hilbert space H. Set d = infx∈M ‖x‖, and let xn ∈ M
be such that ‖xn‖ → d. We will prove (xn) is Cauchy. From the parallelogram law, we find

‖xn − xm‖2 + ‖xn + xm‖2 = 2‖xn‖2 + 2‖xm‖2.
Now use that by convexity and the definition of d, we have

‖xn + xm‖2 = 4 ‖12(xn + xm)‖2 ≥ 4d2.

It follows that
‖xn − xm‖2 ≤ 2‖xn‖2 + 2‖xm‖2 − 4d2.

Now use that ‖xn‖ → d to prove that you can make ‖xn − xm‖ arbitrarily small when m,n ≥ N
for N large enough. Now use that H is complete to show that xn → x for some x ∈ H.

To prove uniqueness, suppose ‖x‖ = ‖x′‖ = d. Then

‖x− x′‖2 + ‖x+ x′‖2 = 2‖x‖2 + 2‖x′‖2 = 4d2.

Using convexity again, we find

‖x− x′‖2 = 4d2 − ‖x+ x′‖2 = 4d2 − 4‖12(x+ x′)‖2 ≤ 4d2 − 4d2 = 0.

6.2: (a) Given an function u, set α =
∫ 1
0 u(x) dx and d = infn∈N ‖u− x‖. Suppose n ∈ N . Then

‖u− n‖ = ‖(u− α− n) + α‖ = ‖g + α‖, where g = u− α− n.
Observe that g ∈ N .

Case 1: Suppose that n is the constant function n(x) = α. Then g = 0, and we find that ‖u−n‖ =
‖α‖ = |α|. Consequently, d ≥ |α|.

Case 2: Suppose that n is not constantly α. Then g 6= 0. Since
∫
g = 0 and g is continuous, we know

there exist points b, c ∈ I such that g(b) > 0 and g(c) < 0. If α > 0, then ‖g+α‖ ≥ |g(b)+α| > |α|.
If α < 0, then ‖g + α‖ ≥ |g(c) + α| > |α|.

(b) Using the results from part (a), we know that d(u,M) ≥ |
∫
u| = 1/2.

To show that d(u,M) = 1/2, construct a minimizing sequence as follows: Pick vn ∈M so that vn
is the piecewise linear continuous function that connects the nodes

vn(0) = 0, vn(1/n) = −1/2, vn(1/2) = 0, vn(1) = 1/2.

Then ‖u− vn‖ = |u(1/n)− vn(1/n)| = 1/2 + 1/n→ 1/2.

Finally, we prove there cannot exist an actual minimizer. Observe that we proved previously that
there is a unique vector v ∈ N such that ‖u− v‖ = 1/2. This is the vector v(x) = x− 1/2. Since
this v /∈M , it follows that there is no actual minimizer.
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6.3: First we prove that for any set A we have A⊥ = Ā⊥.

Ā⊥ ⊆ A⊥ This is obvious since A ⊆ Ā. (If x ∈ Ā⊥, then x is orthogonal to every element in Ā,

which in particular implies that x is orthogonal to everything in A.)

A⊥ ⊆ Ā⊥ Suppose x ∈ A⊥. We need to prove that for every y ∈ Ā, we have (x, y) = 0. To this

end, note that for any y ∈ Ā, we can pick a sequence (yn) such that yn → y. Then

(x, y) = lim
n

(x, yn) = {Use that yn ∈ A and that x ∈ A⊥} = lim
n

0 = 0.

Next we prove that if M is a linear subspace, then M⊥⊥ = M̄ . Since M̄ is a closed linear subspace,
we know from a theorem in the text that

H = M̄ ⊕ M̄⊥.
This proves that M̄⊥⊥ = M̄ . Now invoke the result that A⊥ = Ā⊥ for any subset A to find that

M̄⊥⊥ =
(
M̄⊥

)⊥
=
(
M⊥

)⊥
= M⊥⊥.

6.4: Proving that H1 ⊕H2 is a Hilbert space with the inner product given is a straight-forward
exercise.

Set M = {(x1, 0) : x1 ∈ H1}. We define the space N via

N = {(0, x2) : x2 ∈ H2}.
We claim that M⊥ = N . Suppose first that x ∈ N and y ∈M . Then

(x, y) = ((0, x2), (y1, 0)) = (0, y1)H1 + (x2, 0)H2 = 0

so x ∈ M⊥. Next, suppose that x /∈ N . Then x = (x1, x2) for some non-zero element x1. Then
observe that z := (x1, 0) ∈M and that

(x, z) = ((x1, x2), (x1, 0)) = (x1, x1)H1 + (x2, 0)H2 = ‖x1‖2H1
6= 0,

so x /∈M⊥.

6.6: Let us first consider the case of a finite orthogonal set, and let {xj}nj=1 be such a set. Suppose
that

c1x1 + c2x2 + · · · cnxn = 0.

Then for any j = 1, 2, . . . , n we find that

0 = (xj , c1x1 + c2x2 + · · · cnxn) = cj ‖xj‖2

which proves that each cj must equal zero.

Next consider an infinite set {xj}∞j=1. In this case, simply apply the finite set result to demonstrate

that {xj}nj=1 is linearly independent for any n, which shows that the full sequence in linearly
independent.
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Problem 1: Let H be a Hilbert space, and let (ej)
n
j=1 be an orthonormal set in H. Let x be an

arbitrary vector in H. Set M = span(e1, . . . , en), set

y =
n∑

j=1

(ej , x) ej ,

and set z = x− y. Prove that z ∈M⊥ (and consequently, that y ⊥ z). Prove that

‖x− y‖ = inf
y′∈M

‖x− y′‖.

Prove that y is the unique minimizer (in other words, if y′ ∈ M\{y}, then ‖x − y′‖ > ‖x − y‖).
Prove these claims directly, without using the theorem about existence of a unique minimizer
between a closed convex set and a point.

Solution:

First we prove that z ∈M⊥. Set αj = (ej , x) so that

x =
n∑

j=1

αjej .

Let m ∈M so that m =
∑n

i=1 βiei for some complex numbers {βi}ni=1. Then

(z,m) = (x− y,m) = (x−
∑
j

αjej ,
∑
i

βiei) = (x,
∑
i

βiei)− (
∑
j

αjej ,
∑
i

βiei) =

=
∑
i

βi(x, ei)−
∑
j

αj

∑
i

βi(ej , ei) =
∑
i

βiαi −
∑
j

αjβj = 0.

Now observe that for any m ∈M , we have

‖x−m‖2 = ‖(x− y)− (m− y)‖2 = ‖z − (m− y)‖2.
Since m− y ∈M , and z ∈M⊥ we find that

‖x−m‖2 = ‖z‖2 + ‖(m− y)‖2.
This directly proves everything: ‖x−m‖ ≥ ‖z‖, with equality iff m = y.
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Problem 2: Set I = [−1, 1] and consider the Hilbert space H = L2(I). Let M denote the
subspace of H consisting of all even functions (in other words, functions such that f(x) = f(−x)
for all x). Given an f ∈ H, prove that

inf
g∈M
‖f − g‖ =

(∫ 1

−1

∣∣∣∣f(x)− f(−x)

2

∣∣∣∣2 dx
)1/2

.

(Don’t worry about issues relating to Lebesgue integration.)

Solution:

Set
d = inf

g∈M
‖f − g‖.

Then define two maps P and Q on H via

[Pf ](x) =
1

2

(
f(x) + f(−x)

)
,

[Qf ](x) =
1

2

(
f(x)− f(−x)

)
.

Then for any f ∈ H, we have
f = Pf +Qf.

Next, observe that for any g ∈M we have

‖f − g‖2 = ‖(f − Pf)− (g − Pf)‖2 = ‖Qf − (g − Pf)‖2.
Now observe that since Qf is odd and g − Pf is even, we have Qf ⊥ (g − Pf). Consequently

‖f − g‖2 = ‖Qf‖2 + ‖(g − Pf)‖2.
This relation proves directly that d = ‖Qf‖ and that the minimum is attained iff g = Pf .
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Problem 3: Let X be a separable infinite-dimensional Hilbert space. Prove that there exists a
family of closed linear subspaces {Ωt : t ∈ [0, 1]} such that Ωs is a strict subset of Ωt whenever
s < t.

Hint: It might be easier to solve the problem if you consider a particular Hilbert space, such as,
e.g., H = L2(I), for I = [0, 1]. If you can solve the problem for this specific H, you can then
invoke the theorem that all separable Hilbert spaces are unitarily equivalent.

Solution:

In the space H suggested in the hint, the problem is easy. Set, e.g.,

Ψt = {f ∈ L2(I) : f(x) = 0 when x > t}.
Then the family {Ψt}t∈[0,1] satisfies the criteria.

For a general Hilbert space X, let U : X → H be a unitary map. Then set

Ωt = U−1 Ψt U.


