Solution/hints for homework set 14 - APPM5440 - Fall 2016

6.1: Let M be the closed convex set in a Hilbert space H. Set $d=\inf _{x \in M}\|x\|$, and let $x_{n} \in M$ be such that $\left\|x_{n}\right\| \rightarrow d$. We will prove $\left(x_{n}\right)$ is Cauchy. From the parallelogram law, we find

$$
\left\|x_{n}-x_{m}\right\|^{2}+\left\|x_{n}+x_{m}\right\|^{2}=2\left\|x_{n}\right\|^{2}+2\left\|x_{m}\right\|^{2} .
$$

Now use that by convexity and the definition of d, we have

$$
\left\|x_{n}+x_{m}\right\|^{2}=4\left\|\frac{1}{2}\left(x_{n}+x_{m}\right)\right\|^{2} \geq 4 d^{2} .
$$

It follows that

$$
\left\|x_{n}-x_{m}\right\|^{2} \leq 2\left\|x_{n}\right\|^{2}+2\left\|x_{m}\right\|^{2}-4 d^{2} .
$$

Now use that $\left\|x_{n}\right\| \rightarrow d$ to prove that you can make $\left\|x_{n}-x_{m}\right\|$ arbitrarily small when $m, n \geq N$ for N large enough. Now use that H is complete to show that $x_{n} \rightarrow x$ for some $x \in H$.

To prove uniqueness, suppose $\|x\|=\left\|x^{\prime}\right\|=d$. Then

$$
\left\|x-x^{\prime}\right\|^{2}+\left\|x+x^{\prime}\right\|^{2}=2\|x\|^{2}+2\left\|x^{\prime}\right\|^{2}=4 d^{2}
$$

Using convexity again, we find

$$
\left\|x-x^{\prime}\right\|^{2}=4 d^{2}-\left\|x+x^{\prime}\right\|^{2}=4 d^{2}-4\left\|\frac{1}{2}\left(x+x^{\prime}\right)\right\|^{2} \leq 4 d^{2}-4 d^{2}=0 .
$$

6.2: (a) Given an function u, set $\alpha=\int_{0}^{1} u(x) d x$ and $d=\inf _{n \in N}\|u-x\|$. Suppose $n \in N$. Then

$$
\|u-n\|=\|(u-\alpha-n)+\alpha\|=\|g+\alpha\|, \quad \text { where } \quad g=u-\alpha-n .
$$

Observe that $g \in N$.
Case 1: Suppose that n is the constant function $n(x)=\alpha$. Then $g=0$, and we find that $\|u-n\|=$ $\|\alpha\|=|\alpha|$. Consequently, $d \geq|\alpha|$.

Case 2: Suppose that n is not constantly α. Then $g \neq 0$. Since $\int g=0$ and g is continuous, we know there exist points $b, c \in I$ such that $g(b)>0$ and $g(c)<0$. If $\alpha>0$, then $\|g+\alpha\| \geq|g(b)+\alpha|>|\alpha|$. If $\alpha<0$, then $\|g+\alpha\| \geq|g(c)+\alpha|>|\alpha|$.
(b) Using the results from part (a), we know that $d(u, M) \geq\left|\int u\right|=1 / 2$.

To show that $d(u, M)=1 / 2$, construct a minimizing sequence as follows: Pick $v_{n} \in M$ so that v_{n} is the piecewise linear continuous function that connects the nodes

$$
v_{n}(0)=0, \quad v_{n}(1 / n)=-1 / 2, \quad v_{n}(1 / 2)=0, \quad v_{n}(1)=1 / 2 .
$$

Then $\left\|u-v_{n}\right\|=\left|u(1 / n)-v_{n}(1 / n)\right|=1 / 2+1 / n \rightarrow 1 / 2$.
Finally, we prove there cannot exist an actual minimizer. Observe that we proved previously that there is a unique vector $v \in N$ such that $\|u-v\|=1 / 2$. This is the vector $v(x)=x-1 / 2$. Since this $v \notin M$, it follows that there is no actual minimizer.
6.3: First we prove that for any set A we have $A^{\perp}=\bar{A}^{\perp}$.
$\bar{A}^{\perp} \subseteq A^{\perp}$ This is obvious since $A \subseteq \bar{A}$. (If $x \in \bar{A}^{\perp}$, then x is orthogonal to every element in \bar{A}, which in particular implies that x is orthogonal to everything in A.)
$A^{\perp} \subseteq \bar{A}^{\perp}$ Suppose $x \in A^{\perp}$. We need to prove that for every $y \in \bar{A}$, we have $(x, y)=0$. To this end, note that for any $y \in \bar{A}$, we can pick a sequence $\left(y_{n}\right)$ such that $y_{n} \rightarrow y$. Then

$$
(x, y)=\lim _{n}\left(x, y_{n}\right)=\left\{\text { Use that } y_{n} \in A \text { and that } x \in A^{\perp}\right\}=\lim _{n} 0=0
$$

Next we prove that if M is a linear subspace, then $M^{\perp \perp}=\bar{M}$. Since \bar{M} is a closed linear subspace, we know from a theorem in the text that

$$
H=\bar{M} \oplus \bar{M}^{\perp}
$$

This proves that $\bar{M}^{\perp \perp}=\bar{M}$. Now invoke the result that $A^{\perp}=\bar{A}^{\perp}$ for any subset A to find that

$$
\bar{M}^{\perp \perp}=\left(\bar{M}^{\perp}\right)^{\perp}=\left(M^{\perp}\right)^{\perp}=M^{\perp \perp}
$$

6.4: Proving that $H_{1} \oplus H_{2}$ is a Hilbert space with the inner product given is a straight-forward exercise.

Set $M=\left\{\left(x_{1}, 0\right): x_{1} \in H_{1}\right\}$. We define the space N via

$$
N=\left\{\left(0, x_{2}\right): x_{2} \in H_{2}\right\} .
$$

We claim that $M^{\perp}=N$. Suppose first that $x \in N$ and $y \in M$. Then

$$
(x, y)=\left(\left(0, x_{2}\right),\left(y_{1}, 0\right)\right)=\left(0, y_{1}\right)_{H_{1}}+\left(x_{2}, 0\right)_{H_{2}}=0
$$

so $x \in M^{\perp}$. Next, suppose that $x \notin N$. Then $x=\left(x_{1}, x_{2}\right)$ for some non-zero element x_{1}. Then observe that $z:=\left(x_{1}, 0\right) \in M$ and that

$$
(x, z)=\left(\left(x_{1}, x_{2}\right),\left(x_{1}, 0\right)\right)=\left(x_{1}, x_{1}\right)_{H_{1}}+\left(x_{2}, 0\right)_{H_{2}}=\left\|x_{1}\right\|_{H_{1}}^{2} \neq 0,
$$

so $x \notin M^{\perp}$.
6.6: Let us first consider the case of a finite orthogonal set, and let $\left\{x_{j}\right\}_{j=1}^{n}$ be such a set. Suppose that

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots c_{n} x_{n}=0 .
$$

Then for any $j=1,2, \ldots, n$ we find that

$$
0=\left(x_{j}, c_{1} x_{1}+c_{2} x_{2}+\cdots c_{n} x_{n}\right)=c_{j}\left\|x_{j}\right\|^{2}
$$

which proves that each c_{j} must equal zero.
Next consider an infinite set $\left\{x_{j}\right\}_{j=1}^{\infty}$. In this case, simply apply the finite set result to demonstrate that $\left\{x_{j}\right\}_{j=1}^{n}$ is linearly independent for any n, which shows that the full sequence in linearly independent.

Problem 1: Let H be a Hilbert space, and let $\left(e_{j}\right)_{j=1}^{n}$ be an orthonormal set in H. Let x be an arbitrary vector in H. Set $M=\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)$, set

$$
y=\sum_{j=1}^{n}\left(e_{j}, x\right) e_{j}
$$

and set $z=x-y$. Prove that $z \in M^{\perp}$ (and consequently, that $y \perp z$). Prove that

$$
\|x-y\|=\inf _{y^{\prime} \in M}\left\|x-y^{\prime}\right\| .
$$

Prove that y is the unique minimizer (in other words, if $y^{\prime} \in M \backslash\{y\}$, then $\left\|x-y^{\prime}\right\|>\|x-y\|$). Prove these claims directly, without using the theorem about existence of a unique minimizer between a closed convex set and a point.

Solution:

First we prove that $z \in M^{\perp}$. Set $\alpha_{j}=\left(e_{j}, x\right)$ so that

$$
x=\sum_{j=1}^{n} \alpha_{j} e_{j} .
$$

Let $m \in M$ so that $m=\sum_{i=1}^{n} \beta_{i} e_{i}$ for some complex numbers $\left\{\beta_{i}\right\}_{i=1}^{n}$. Then

$$
\begin{aligned}
&(z, m)=(x-y, m)=\left(x-\sum_{j}\right.\left.\alpha_{j} e_{j}, \sum_{i} \beta_{i} e_{i}\right)=\left(x, \sum_{i} \beta_{i} e_{i}\right)-\left(\sum_{j} \alpha_{j} e_{j}, \sum_{i} \beta_{i} e_{i}\right)= \\
&=\sum_{i} \beta_{i}\left(x, e_{i}\right)-\sum_{j} \overline{\alpha_{j}} \sum_{i} \beta_{i}\left(e_{j}, e_{i}\right)=\sum_{i} \beta_{i} \overline{\alpha_{i}}-\sum_{j} \overline{\alpha_{j}} \beta_{j}=0 .
\end{aligned}
$$

Now observe that for any $m \in M$, we have

$$
\|x-m\|^{2}=\|(x-y)-(m-y)\|^{2}=\|z-(m-y)\|^{2} .
$$

Since $m-y \in M$, and $z \in M^{\perp}$ we find that

$$
\|x-m\|^{2}=\|z\|^{2}+\|(m-y)\|^{2} .
$$

This directly proves everything: $\|x-m\| \geq\|z\|$, with equality iff $m=y$.

Problem 2: Set $I=[-1,1]$ and consider the Hilbert space $H=L^{2}(I)$. Let M denote the subspace of H consisting of all even functions (in other words, functions such that $f(x)=f(-x)$ for all x). Given an $f \in H$, prove that

$$
\inf _{g \in M}\|f-g\|=\left(\int_{-1}^{1}\left|\frac{f(x)-f(-x)}{2}\right|^{2} d x\right)^{1 / 2}
$$

(Don't worry about issues relating to Lebesgue integration.)

Solution:

Set

$$
d=\inf _{g \in M}\|f-g\|
$$

Then define two maps P and Q on H via

$$
\begin{aligned}
& {[P f](x)=\frac{1}{2}(f(x)+f(-x))} \\
& {[Q f](x)=\frac{1}{2}(f(x)-f(-x))}
\end{aligned}
$$

Then for any $f \in H$, we have

$$
f=P f+Q f
$$

Next, observe that for any $g \in M$ we have

$$
\|f-g\|^{2}=\|(f-P f)-(g-P f)\|^{2}=\|Q f-(g-P f)\|^{2}
$$

Now observe that since $Q f$ is odd and $g-P f$ is even, we have $Q f \perp(g-P f)$. Consequently

$$
\|f-g\|^{2}=\|Q f\|^{2}+\|(g-P f)\|^{2}
$$

This relation proves directly that $d=\|Q f\|$ and that the minimum is attained iff $g=P f$.

Problem 3: Let X be a separable infinite-dimensional Hilbert space. Prove that there exists a family of closed linear subspaces $\left\{\Omega_{t}: t \in[0,1]\right\}$ such that Ω_{s} is a strict subset of Ω_{t} whenever $s<t$.

Hint: It might be easier to solve the problem if you consider a particular Hilbert space, such as, e.g., $H=L^{2}(I)$, for $I=[0,1]$. If you can solve the problem for this specific H, you can then invoke the theorem that all separable Hilbert spaces are unitarily equivalent.

In the space H suggested in the hint, the problem is easy. Set, e.g.,

$$
\Psi_{t}=\left\{f \in L^{2}(I): f(x)=0 \text { when } x>t\right\} .
$$

Then the family $\left\{\Psi_{t}\right\}_{t \in[0,1]}$ satisfies the criteria.
For a general Hilbert space X, let $U: X \rightarrow H$ be a unitary map. Then set

$$
\Omega_{t}=U^{-1} \Psi_{t} U
$$

