APPM5440 - Applied Analysis: Section exam 1
 10:00-10:50, Sep. 23, 2016. Closed books.

Important: Complete problems 1, 2, and 3 in class, and hand your solution in no later than 10:50am. Then complete questions 4 and 5 at home (individual work, no group efforts) and hand the solution in on Wednesday September 28 at the beginning of class at 10:00am.

Problem 1: Consider the set $X=\mathbb{R}^{3}$. Let p be a real number such that $0<p<\infty$.
(a) For which values of p in the interval $(0, \infty)$ is the following function a metric on $X=\mathbb{R}^{3}$:

$$
d(x, y)=\left(\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|^{p}+\left|x_{3}-y_{3}\right|^{p}\right)^{1 / p}
$$

(b) For which values of p in the interval $(0, \infty)$ is the following function a metric on $X=\mathbb{R}^{3}$:

$$
d(x, y)=\left(\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|^{p}\right)^{1 / p}+\left|x_{3}-y_{3}\right| .
$$

(c) For which values of p in the interval $(0, \infty)$ is the following function a metric on $X=\mathbb{R}^{3}$:

$$
d(x, y)=\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|+\left|x_{3}-y_{3}\right| .
$$

No motivation is necessary, just write down your answer to each part. Observe carefully that the question is about metrics, not norms.

Problem 2: Let (X, d) be a metric space, and let Ω be a subset of X.
(a) Define what it means for Ω to be totally bounded.
(b) Suppose that X itself is totally bounded. Does X necessarily have a countable dense subset? If you answer yes, then prove this. If you answer no, then provide a counter example.

Problem 3: In this problem, let (X, d) denote a metric space.
(a) Let Ω be a subset of X. State the definition of the closure of Ω.
(b) Consider the set of rational numbers $X=\mathbb{Q}$ equipped with the standard metric (the absolute value function). Set $\Omega=\left\{x \in X: x^{2}<2\right\}$. What is the closure of Ω ?
(c) State the definition of a completion of (X, d).
(d) Consider the set X of positive rational numbers. What is the completion of X ? (The completion is not unique, of course, but there is one very natural candidate.)

Take home exam below.

Problem 4: Set $X=\ell^{2}$. In other words, an element $x \in X$ if it is a sequence of real numbers $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ such that $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty$. The norm on X is $\|x\|=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}$. Let B denote the unit ball, so that $B=\{x \in X:\|x\| \leq 1\}$. Prove that B is not a compact set.

Problem 5: Set $I=[0,1]$ and let X denote the set of real-valued piecewise continuous functions f on I such that

$$
\int_{0}^{1}|f(x)|^{2} d x<\infty
$$

(Since f is piecewise continuous, this is a plain Riemann integral.) Define the function n on X via

$$
n(f)=\int_{0}^{1}|f(x)| d x
$$

(a) Prove that the function n is a seminorm on X.
(b) Construct a sequence of functions $\left(f_{n}\right)_{n=1}^{\infty}$ in X that is Cauchy with respect to n, and that converges pointwise to a function on I that does not belong to X.

