Each problem has a max of 8 points, for a total maximum score of 40 points.

Problem 1: Consider the set $X = \mathbb{R}^3$. Let p be a real number such that 0 .

(a) For which values of p in the interval $(0, \infty)$ is the following function a metric on $X = \mathbb{R}^3$:

$$d(x,y) = \left(|x_1 - y_1|^p + |x_2 - y_2|^p + |x_3 - y_3|^p\right)^{1/p}.$$

(b) For which values of p in the interval $(0, \infty)$ is the following function a metric on $X = \mathbb{R}^3$:

$$d(x,y) = \left(|x_1 - y_1|^p + |x_2 - y_2|^p\right)^{1/p} + |x_3 - y_3|.$$

(c) For which values of p in the interval $(0, \infty)$ is the following function a metric on $X = \mathbb{R}^3$:

$$d(x,y) = |x_1 - y_1|^p + |x_2 - y_2| + |x_3 - y_3|.$$

No motivation is necessary, just write down your answer to each part. Observe carefully that the question is about *metrics*, not *norms*.

Solution:

- (a) $\lfloor p \in [1, \infty) \rfloor$ This is just the standard ℓ^p norm on \mathbb{R}^3 . When p < 1, the triangle inequality does not hold.
- (b) $p \in [1, \infty)$ This is a mixture of the ℓ^1 and ℓ^p norms. If p < 1, then the triangle inequality does not hold in the x_1 - x_2 -plane. If $p \ge 1$, then observe that if $(X_1, \|\cdot\|_1)$ and $(X_2, \|\cdot\|_2)$ are two NLS, then $X_1 \times X_2$ is a NLS with the norm $\|(x_1, x_2)\| = \|x_1\|_1 + \|x_2\|_2$.
- (c) $p \in (0,1]$ See the proof of Exercise 1.5. We showed if $(X, \|\cdot\|)$ is a NLS, and if $f: [0,\infty) \to [0,\infty)$ is a function such that f(0) = 0, $f' \ge 0$, and f' is non-increasing, then $d(x,y) = f(\|x-y\|)$ is a metric on X. With $f(t) = t^p$, we see that the conditions hold if $p \in (0,1]$. If p > 1, then the triangle inequality is violated on the x_1 -axis.

Problem 2: Let (X, d) be a metric space, and let Ω be a subset of X.

- (a) Define what it means for Ω to be *totally bounded*.
- (b) Suppose that X itself is totally bounded. Does X necessarily have a countable dense subset? If you answer yes, then prove this. If you answer no, then provide a counter example.

Solution:

Max of 2p for (a), and 6p for (b).

For (a) see the textbook. The answer to (b) is yes, and the proof is a subset of the proof that any compact set has a dense countable subset. Observe that we do *not* need X to be complete for this proof to work.

Problem 3: In this problem, let (X, d) denote a metric space.

- (a) Let Ω be a subset of X. State the definition of the *closure* of Ω .
- (b) Consider the set of rational numbers $X = \mathbb{Q}$ equipped with the standard metric (the absolute value function). Set $\Omega = \{x \in X : x^2 < 2\}$. What is the closure of Ω ?
- (c) State the definition of a *completion* of (X, d).
- (d) Consider the set X of *positive* rational numbers. What is the completion of X? (The completion is not unique, of course, but there is one very natural candidate.)

Solution:

For (d), one natural completion is the interval $I = [0, \infty)$ of real numbers. Observe that ∞ should not be included in the completion since there is no Cauchy sequence in X that converges to ∞ . (Every Cauchy sequence is bounded.)

Max of 2p for each sub-question.

For (b), the answer is that $\overline{\Omega} = \Omega$. Recall that in one of the homeworks, we proved that in X, the set Ω is closed, so it is its own closure. Recall that when we talk about closure of a set (as opposed to "completion") then we only work with points already in the set. So in this particular example, we cannot add non-rational numbers to the closure.

Problem 4: Set $X = \ell^2$. In other words, an element $x \in X$ if it is a sequence of real numbers $x = (x_1, x_2, x_3, ...)$ such that $\sum_{n=1}^{\infty} |x_n|^2 < \infty$. The norm on X is $||x|| = (\sum_{n=1}^{\infty} |x_n|^2)^{1/2}$. Let B denote the unit ball, so that $B = \{x \in X : ||x|| \le 1\}$. Prove that B is not a compact set.

Solution:

Let $\{e^{(n)}\}_{n=1}^{\infty}$ denote the canonical basis vectors, so that

 $e^{(1)} = (1, 0, 0, 0, \dots),$ $e^{(2)} = (0, 1, 0, 0, \dots),$ $e^{(3)} = (0, 0, 1, 0, \dots),$

Then you can easily verify that $e^{(n)} \in B$ for every n, and that if $m \neq n$, then $||e^{(n)} - e^{(m)}|| = \sqrt{2}$, which shows that $(e^{(n)})$ cannot have a convergent subsequence. Alternative, you could use these observations to prove that if $\varepsilon < 1/\sqrt{2}$, then there cannot exist a finite ε -cover of B since at most one $e^{(n)}$ can be inside any such ε -ball.

Problem 5: Set I = [0, 1] and let X denote the set of real-valued piecewise continuous functions f on I such that

$$\int_0^1 |f(x)|^2 \, dx < \infty.$$

(Since f is piecewise continuous, this is a plain Riemann integral.) Define the function n on X via

$$n(f) = \int_0^1 |f(x)| \, dx.$$

- (a) Prove that the function n is a seminorm on X.
- (b) Construct a sequence of functions $(f_n)_{n=1}^{\infty}$ in X that is Cauchy with respect to n, and that converges pointwise to a function on I that does not belong to X.

Solution:

For (b), you could use, for instance, the functions

$$f_n(x) = \begin{cases} 0, & x \in [0, 1/n), \\ x^{-1/2}, & x \in [1/n, 1]. \end{cases}$$

We have $\int_0^1 |f_n|^2 = \int_{1/n}^1 x^{-1} dx = \log(n) < \infty$ so $f_n \in X$. Moreover, for $m \le n$, we have

$$\|f_n - f_m\| = \int_0^1 |f_n(x) - f_m(x)| \, dx = \int_{1/n}^{1/m} x^{-1/2} \, dx = \left[2 \, x^{1/2}\right]_{1/n}^{1/m} = 2 \, m^{-1/2} - 2 \, n^{-1/2}.$$

We see that if $m, n \ge N$, then $||f_n - f_m|| \le 2N^{-1/2}$ so (f_n) is indeed Cauchy. The pointwise limit of (f_n) is the function

$$f(x) = \begin{cases} 0, & x = 0, \\ x^{-1/2}, & x \in (0, 1]. \end{cases}$$

But

$$\int_0^1 |f(x)|^2 \, dx = \int_0^1 x^{-1} \, dx = \infty.$$

so $f \notin X$.

Max of 2p for (a), and 6p for (b).