APPM5440 - Applied Analysis: Section exam 1 - Solutions 10:00-10:50, Sep. 23, 2016. Closed books.

Each problem has a max of 8 points, for a total maximum score of 40 points.
Problem 1: Consider the set $X=\mathbb{R}^{3}$. Let p be a real number such that $0<p<\infty$.
(a) For which values of p in the interval $(0, \infty)$ is the following function a metric on $X=\mathbb{R}^{3}$:

$$
d(x, y)=\left(\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|^{p}+\left|x_{3}-y_{3}\right|^{p}\right)^{1 / p} .
$$

(b) For which values of p in the interval $(0, \infty)$ is the following function a metric on $X=\mathbb{R}^{3}$:

$$
d(x, y)=\left(\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|^{p}\right)^{1 / p}+\left|x_{3}-y_{3}\right| .
$$

(c) For which values of p in the interval $(0, \infty)$ is the following function a metric on $X=\mathbb{R}^{3}$:

$$
d(x, y)=\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|+\left|x_{3}-y_{3}\right| .
$$

No motivation is necessary, just write down your answer to each part. Observe carefully that the question is about metrics, not norms.

Solution:

(a) $p \in[1, \infty)$ This is just the standard ℓ^{p} norm on \mathbb{R}^{3}. When $p<1$, the triangle inequality does not hold.
(b) $p \in[1, \infty)$ This is a mixture of the ℓ^{1} and ℓ^{p} norms. If $p<1$, then the triangle inequality does not hold in the x_{1} - x_{2}-plane. If $p \geq 1$, then observe that if $\left(X_{1},\|\cdot\|_{1}\right)$ and $\left(X_{2},\|\cdot\|_{2}\right)$ are two NLS, then $X_{1} \times X_{2}$ is a NLS with the norm $\left\|\left(x_{1}, x_{2}\right)\right\|=\left\|x_{1}\right\|_{1}+\left\|x_{2}\right\|_{2}$.
(c) $p \in(0,1]$ See the proof of Exercise 1.5. We showed if $(X,\|\cdot\|)$ is a NLS, and if $f:[0, \infty) \rightarrow$ $[0, \infty)$ is a function such that $f(0)=0, f^{\prime} \geq 0$, and f^{\prime} is non-increasing, then $d(x, y)=$ $f(\|x-y\|)$ is a metric on X. With $f(t)=t^{p}$, we see that the conditions hold if $p \in(0,1]$. If $p>1$, then the triangle inequality is violated on the x_{1}-axis.

Problem 2: Let (X, d) be a metric space, and let Ω be a subset of X.
(a) Define what it means for Ω to be totally bounded.
(b) Suppose that X itself is totally bounded. Does X necessarily have a countable dense subset? If you answer yes, then prove this. If you answer no, then provide a counter example.

For (a) see the textbook. The answer to (b) is yes, and the proof is a subset of the proof that any compact set has a dense countable subset. Observe that we do not need X to be complete for this proof to work.

Max of $2 p$ for (a), and $6 p$ for (b).

Problem 3: In this problem, let (X, d) denote a metric space.
(a) Let Ω be a subset of X. State the definition of the closure of Ω.
(b) Consider the set of rational numbers $X=\mathbb{Q}$ equipped with the standard metric (the absolute value function). Set $\Omega=\left\{x \in X: x^{2}<2\right\}$. What is the closure of Ω ?
(c) State the definition of a completion of (X, d).
(d) Consider the set X of positive rational numbers. What is the completion of X ? (The completion is not unique, of course, but there is one very natural candidate.)

Solution:

For (b), the answer is that $\bar{\Omega}=\Omega$. Recall that in one of the homeworks, we proved that in X, the set Ω is closed, so it is its own closure. Recall that when we talk about closure of a set (as opposed to "completion") then we only work with points already in the set. So in this particular example, we cannot add non-rational numbers to the closure.

For (d), one natural completion is the interval $I=[0, \infty)$ of real numbers. Observe that ∞ should not be included in the completion since there is no Cauchy sequence in X that converges to ∞. (Every Cauchy sequence is bounded.)

Max of $2 p$ for each sub-question.

Problem 4: Set $X=\ell^{2}$. In other words, an element $x \in X$ if it is a sequence of real numbers $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ such that $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty$. The norm on X is $\|x\|=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}$. Let B denote the unit ball, so that $B=\{x \in X:\|x\| \leq 1\}$. Prove that B is not a compact set.

Let $\left\{e^{(n)}\right\}_{n=1}^{\infty}$ denote the canonical basis vectors, so that

$$
\begin{aligned}
& e^{(1)}=(1,0,0,0, \ldots), \\
& e^{(2)}=(0,1,0,0, \ldots), \\
& e^{(3)}=(0,0,1,0, \ldots),
\end{aligned}
$$

Then you can easily verify that $e^{(n)} \in B$ for every n, and that if $m \neq n$, then $\left\|e^{(n)}-e^{(m)}\right\|=\sqrt{2}$, which shows that $\left(e^{(n)}\right)$ cannot have a convergent subsequence. Alternative, you could use these observations to prove that if $\varepsilon<1 / \sqrt{2}$, then there cannot exist a finite ε-cover of B since at most one $e^{(n)}$ can be inside any such ε-ball.

Problem 5: Set $I=[0,1]$ and let X denote the set of real-valued piecewise continuous functions f on I such that

$$
\int_{0}^{1}|f(x)|^{2} d x<\infty
$$

(Since f is piecewise continuous, this is a plain Riemann integral.) Define the function n on X via

$$
n(f)=\int_{0}^{1}|f(x)| d x
$$

(a) Prove that the function n is a seminorm on X.
(b) Construct a sequence of functions $\left(f_{n}\right)_{n=1}^{\infty}$ in X that is Cauchy with respect to n, and that converges pointwise to a function on I that does not belong to X.

Solution:

For (b), you could use, for instance, the functions

$$
f_{n}(x)= \begin{cases}0, & x \in[0,1 / n), \\ x^{-1 / 2}, & x \in[1 / n, 1] .\end{cases}
$$

We have $\int_{0}^{1}\left|f_{n}\right|^{2}=\int_{1 / n}^{1} x^{-1} d x=\log (n)<\infty$ so $f_{n} \in X$. Moreover, for $m \leq n$, we have

$$
\left\|f_{n}-f_{m}\right\|=\int_{0}^{1}\left|f_{n}(x)-f_{m}(x)\right| d x=\int_{1 / n}^{1 / m} x^{-1 / 2} d x=\left[2 x^{1 / 2}\right]_{1 / n}^{1 / m}=2 m^{-1 / 2}-2 n^{-1 / 2} .
$$

We see that if $m, n \geq N$, then $\left\|f_{n}-f_{m}\right\| \leq 2 N^{-1 / 2}$ so $\left(f_{n}\right)$ is indeed Cauchy. The pointwise limit of $\left(f_{n}\right)$ is the function

$$
f(x)= \begin{cases}0, & x=0, \\ x^{-1 / 2}, & x \in(0,1] .\end{cases}
$$

But

$$
\int_{0}^{1}|f(x)|^{2} d x=\int_{0}^{1} x^{-1} d x=\infty
$$

so $f \notin X$.
Max of $2 p$ for (a), and $6 p$ for (b).

