APPM5440 - Applied Analysis: Section exam 2

10:00 - 10:50, Oct. 31, 2016. Closed books.
Important: Complete problems 1, 2, and 3 in class, and hand your solution in no later than 10:50am. Then complete questions 4 and 5 at home (individual work, no group efforts) and hand the solution in on Friday November 4 at the beginning of class at 10:00am.

Problem 1: (8 points total, 4 points for each subquestion.)
(a) State the Contraction Mapping Theorem (include a precise definition a contraction).
(b) Does the function $f(x)=x /(1+x)$ acting on the interval $I=[0, \infty)$ satisfy your definition?

Solution:

(a) See book. In grading this problem, I was a stickler about the logic. For full points, you must first posit the existence of $c \in[0,1)$. Then $d(f(x), f(y)) \leq c d(x, y) \quad \forall x, y$.
(b) The given function is not a contraction in the sense used in the book. We have

$$
\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|} \geq\{\operatorname{Set} y=0\} \geq \sup _{x \neq 0} \frac{|f(x)-f(0)|}{|x-0|}=\sup _{x \neq 0} \frac{|x /(1+x)|}{|x|}=\sup _{x \neq 0} \frac{1}{|1+x|}=1 \text {. }
$$

(Some of you proved rigorously that $|f(x)-f(y)|<|x-y|$. This is indeed a kind of contraction, so this earned 1 point. However, if you proved that $|f(x)-f(y)| \leq|x-y|$, then this merited 0 points since this is not a contraction.)

Problem 2: (8 points) Set $I=[0,1]$ and define for $f \in C(I)$ the function $\varphi(f)=\sup _{x \in I}|x f(x)|$. Please motivate your answers to all questions.
(a) (2p) Prove that $\varphi(f+g) \leq \varphi(f)+\varphi(g)$ for all $f, g \in C(I)$.
(b) (3p) Let $\|f\|_{\mathrm{u}}=\sup _{x \in I}|f(x)|$ denote the standard norm on $C(I)$. Determine the number

$$
M=\sup _{f \in C(I), f \neq 0} \frac{\varphi(f)}{\|f\|_{\mathrm{u}}} .
$$

(c) (3p) Let $\|f\|_{\mathrm{u}}=\sup _{x \in I}|f(x)|$ denote the standard norm on $C(I)$. Determine the number

$$
m=\inf _{f \in C(I), f \neq 0} \frac{\varphi(f)}{\|f\|_{\mathrm{u}}}
$$

Solution:

(a) This is straight-forward.
(b) First, note that

$$
M=\sup _{f \neq 0} \frac{\varphi(f)}{\|f\|_{\mathrm{u}}}=\sup _{f \neq 0} \frac{\sup _{x}|x f(x)|}{\|f\|_{\mathrm{u}}} \leq \sup _{f \neq 0} \frac{\sup _{x}|f(x)|}{\|f\|_{\mathrm{u}}}=\sup _{f \neq 0} \frac{\|f\|_{\mathrm{u}}}{\|f\|_{\mathrm{u}}}=1
$$

Next, we have

$$
M=\sup _{f \neq 0} \frac{\varphi(f)}{\|f\|_{\mathrm{u}}} \geq\{\operatorname{Set} f=1\} \geq \frac{\varphi(1)}{\|1\|_{\mathrm{u}}}=\frac{\sup _{x}|x|}{\sup _{x} 1}=\frac{1}{1}=1 .
$$

So $M=1$.
(c) Consider the functions

$$
f_{n}(x)= \begin{cases}1-n x & x \in[0,1 / n) \\ 0 & x \in[1 / n, 1] .\end{cases}
$$

Then clearly $\left\|f_{n}\right\|_{\mathrm{u}}=1$. Moreover,

$$
\varphi\left(f_{n}\right)=\sup _{x \in[0,1]}\left|x f_{n}(x)\right|=\sup _{x \in[0,1 / n]}|x(1-n x)| \leq \sup _{x \in[0,1 / n]}|x|=1 / n
$$

Putting everything together, we find that

$$
m=\inf _{f \in C(I), f \neq 0} \frac{\varphi(f)}{\|f\|_{\mathrm{u}}} \leq \inf _{n=1,2,3, \ldots} \frac{\varphi\left(f_{n}\right)}{\left\|f_{n}\right\|_{\mathrm{u}}} \leq \inf _{n=1,2,3, \ldots} \frac{1 / n}{1}=0 .
$$

Since m must be non-negative, we find $m=0$.
Note: In the exam, φ was defined via $\varphi(f)=\sup _{x \in I}\|x f(x)\|$. The norm around $x f(x)$ was a typo, and
I regret if this caused confusion. Note that it does not really change anything, though. The quantity " $x f(x)$ " is a scalar, and the "norm" of a scalar is of course the absolute value.

Problems 3 and 4: (8 points) Answer TRUE or FALSE for each of the questions.
(a) Set $I=[0, \infty)$. There exists a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $C(I)$ that is equicontinuous, bounded, and does not have a convergent subsequence.
(b) Set $I=[0,1]$. There exists a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $C(I)$ that is equicontinuous, and does not have a convergent subsequence.
(c) Set $I=[0,1]$. There exists a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $C(I)$ that is bounded, and does not have a convergent subsequence.
(d) Set $I=[0,1]$. There exists a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $C(I)$ that is bounded, equicontinuous, and does not have a convergent subsequence.
(e) Set $I=[0,1]$, and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of functions in $C(I)$ that converges pointwise. Furthermore, suppose that $\operatorname{Lip}\left(f_{n}\right) \leq 2$ for every n. Then the numbers $I_{n}=\int_{0}^{1} f_{n}(x) d x$ form a convergent sequence in \mathbb{R}.

Solution:

(a) TRUE. For an example, consider

$$
f_{n}(x)= \begin{cases}0 & x \in[0, n-1] \\ 1-|x-n| & x \in(n-1, n+1) \\ 0 & x \in[n+1, \infty)\end{cases}
$$

In other words, $\left(f_{n}\right)$ is a sequence of "tent functions" moving off to the right. Then $\left(f_{n}\right)$ is bounded and equicontinuous. Since $\left\|f_{n}-f_{m}\right\| \geq\left|f_{n}(n)-f_{m}(n)\right|=|1-0|=1$ whenever $m \neq n$, we see that $\left(f_{n}\right)$ cannot have a convergent subsequence.
(b) TRUE. Set $f_{n}=n$. Then $\left(f_{n}\right)$ is equicontinuous, since $\operatorname{Lip}\left(f_{n}\right)=0$ for every n. Moreover $\left\|f_{n}-f_{m}\right\|_{\mathrm{u}}=|n-m|$ so $\left(f_{n}\right)$ cannot have a convergent subsequence.
(c) TRUE. Set $f_{n}(x)=x^{n}$. Then $\left(f_{n}\right)$ is bounded since $\left\|f_{n}\right\|_{\mathrm{u}}=1$. But $\left(f_{n}\right)$ converges pointwise to the discontinuous function

$$
f(x)= \begin{cases}0 & x \in[0,1) \\ 1 & x=1\end{cases}
$$

If $\left(f_{n}\right)$ had a convergent subsequence, then this subsequence would have to have f as its limit point too, which is impossible since the uniform limit of continuous functions must be continuous.
(d) FALSE. The AA theorem says that if $\left(f_{n}\right)$ is a bounded equicontinuous sequence of functions on a compact set I, then $\left(f_{n}\right)$ must have a uniformly convergent subsequence.
(e) TRUE. (No motivation required here, but recall from Problem 1 on HW6 that (f_{n}) must be uniformly convergent. This means that the integrals must converge too.)

Note: It is NOT sufficient for (a), (b), and (c) to merely point out how the AA theorem is violated. This simply says that the AA theorem does not preclude the existence of a sequence like the one described. You need to do more to affirmatively prove existence. For instance, you can give an example, like the ones above.

In grading problem 4, I did not give credit for a correct answer backed up by an invalid motivation.

Problem 5: (8 points) Let T be the integral operator that takes a function $u \in C(\mathbb{R})$ and maps it to

$$
[T u](x)=\int_{0}^{x}\left((u(y))^{3}+\cos (u(y))\right) d y+1, \quad x \in \mathbb{R}
$$

(a) (5p) Let δ and B be positive numbers and set

$$
\Omega=\left\{u \in C([0, \delta]):\|u\|_{u} \leq B\right\}
$$

Prove that if B and δ are small enough, then $T: \Omega \rightarrow \Omega$ is a contraction, as defined in Definition 3.1 in the text book (with respect to the uniform norm, of course). Your numbers B and δ do not need to be optimal, but if your estimate is unnecessarily crude, then some small number of points might be deducted.
(b) (3p) Prove that the operator T is not a contraction as a map from $C([0, \delta])$ to $C([0, \delta])$ for any $\delta>0$.

Solution:

(a) First we need to ensure that $T u \in \Omega$ whenever $u \in \Omega$. We have

$$
\|T u\|=\sup _{x}\left|\int_{0}^{x}\left(u(y)^{3}+\cos (u(y))\right) d y+1\right| \leq \sup _{x}\left(\int_{0}^{x}\left(B^{3}+1\right) d y+1\right)=\delta\left(B^{3}+1\right)+1 .
$$

So we must have: $\delta\left(B^{3}+1\right)+1 \leq B$
Next we check if T is a contraction. Set $f(t)=t^{3}+\cos (t)$, so that $[T u](x)=\int_{0}^{x} f(u(y)) d y+1$. Then

$$
[T u](x)-[T v](x)=\left(\int_{0}^{x} f(u(y)) d y+1\right)-\left(\int_{0}^{x} f(v(y)) d y+1\right)=\int_{0}^{x}(f(u(y))-f(v(y))) d y .
$$

Now observe that $f^{\prime}(t)=3 t^{2}+\sin (t)$. If $|t| \leq B$, then $\left|f^{\prime}(t)\right| \leq 3 B^{2}+1$. It follows that if $u, v \in \Omega$, then $|f(u(y))-f(v(y))| \leq\left(3 B^{2}+1\right)|u(y)-v(y)|$. Now, for $u, v \in \Omega$,
$\|T u-T v\|=\sup _{x}\left|\int_{0}^{x}(f(u(y))-f(v(y))) d y\right| \leq \sup _{x}\left|\int_{0}^{x}\left(3 B^{2}+1\right)\right| u(y)-v(y)|d y| \leq \delta\left(3 B^{2}+1\right)\|u-v\|$.
We see that T is a contraction on Ω if: $\delta\left(3 B^{2}+1\right)<1$
The set of possible solutions includes the area below the curves below. E.g. $B=2$ and $\delta=0.05$ works.

(b) Fix $\delta>0$. Set $v=\pi / 2$ and $u_{n}=\pi / 2+2 \pi n$ for $n=1,2,3, \ldots$. Then $T v=1+\delta(\pi / 2)^{3}$ and $T u_{n}=1+\delta(\pi / 2+2 \pi n)^{3}$. It follows that

$$
\frac{\left\|T u_{n}-T v\right\|}{\left\|u_{n}-v\right\|}=\frac{\delta(\pi / 2+2 \pi n)^{3}-\delta(\pi / 2)^{3}}{2 \pi n} .
$$

As $n \rightarrow \infty$, this ratio goes to infinity, so T cannot be a contraction.

