
APPM5440 — Applied Analysis: Section exam 2
10:00 – 10:50, Oct. 31, 2016. Closed books.

Important: Complete problems 1, 2, and 3 in class, and hand your solution in no later than 10:50am.
Then complete questions 4 and 5 at home (individual work, no group efforts) and hand the solution
in on Friday November 4 at the beginning of class at 10:00am.

Problem 1: (8 points total, 4 points for each subquestion.)

(a) State the Contraction Mapping Theorem (include a precise definition a contraction).

(b) Does the function f(x) = x/(1 + x) acting on the interval I = [0,∞) satisfy your definition?

Solution:

(a) See book. In grading this problem, I was a stickler about the logic. For full points, you must first
posit the existence of c ∈ [0, 1). Then d(f(x), f(y)) ≤ c d(x, y) ∀x, y.

(b) The given function is not a contraction in the sense used in the book. We have

sup
x 6=y

|f(x)− f(y)|
|x− y|

≥ {Set y = 0} ≥ sup
x 6=0

|f(x)− f(0)|
|x− 0|

= sup
x 6=0

|x/(1 + x)|
|x|

= sup
x 6=0

1

|1 + x|
= 1.

(Some of you proved rigorously that |f(x)− f(y)| < |x− y|. This is indeed a kind of contraction, so
this earned 1 point. However, if you proved that |f(x) − f(y)| ≤ |x − y|, then this merited 0 points
since this is not a contraction.)



Problem 2: (8 points) Set I = [0, 1] and define for f ∈ C(I) the function ϕ(f) = sup
x∈I
|x f(x)|. Please

motivate your answers to all questions.

(a) (2p) Prove that ϕ(f + g) ≤ ϕ(f) + ϕ(g) for all f, g ∈ C(I).

(b) (3p) Let ‖f‖u = sup
x∈I
|f(x)| denote the standard norm on C(I). Determine the number

M = sup
f∈C(I), f 6=0

ϕ(f)

‖f‖u
.

(c) (3p) Let ‖f‖u = sup
x∈I
|f(x)| denote the standard norm on C(I). Determine the number

m = inf
f∈C(I), f 6=0

ϕ(f)

‖f‖u
.

Solution:

(a) This is straight-forward.

(b) First, note that

M = sup
f 6=0

ϕ(f)

‖f‖u
= sup

f 6=0

supx |xf(x)|
‖f‖u

≤ sup
f 6=0

supx |f(x)|
‖f‖u

= sup
f 6=0

‖f‖u
‖f‖u

= 1.

Next, we have

M = sup
f 6=0

ϕ(f)

‖f‖u
≥ {Setf = 1} ≥ ϕ(1)

‖1‖u
=

supx |x|
supx 1

=
1

1
= 1.

So M = 1.

(c) Consider the functions

fn(x) =

{
1− nx x ∈ [0, 1/n)
0 x ∈ [1/n, 1].

Then clearly ‖fn‖u = 1. Moreover,

ϕ(fn) = sup
x∈[0,1]

|xfn(x)| = sup
x∈[0,1/n]

|x(1− nx)| ≤ sup
x∈[0,1/n]

|x| = 1/n.

Putting everything together, we find that

m = inf
f∈C(I), f 6=0

ϕ(f)

‖f‖u
≤ inf

n=1,2,3,...

ϕ(fn)

‖fn‖u
≤ inf

n=1,2,3,...

1/n

1
= 0.

Since m must be non-negative, we find m = 0.

Note: In the exam, ϕ was defined via ϕ(f) = sup
x∈I
‖x f(x)‖. The norm around x f(x) was a typo, and

I regret if this caused confusion. Note that it does not really change anything, though. The quantity
“x f(x)” is a scalar, and the “norm” of a scalar is of course the absolute value.



Problems 3 and 4: (8 points) Answer TRUE or FALSE for each of the questions.

(a) Set I = [0,∞). There exists a sequence (fn)∞n=1 in C(I) that is equicontinuous, bounded, and
does not have a convergent subsequence.

(b) Set I = [0, 1]. There exists a sequence (fn)∞n=1 in C(I) that is equicontinuous, and does not
have a convergent subsequence.

(c) Set I = [0, 1]. There exists a sequence (fn)∞n=1 in C(I) that is bounded, and does not have a
convergent subsequence.

(d) Set I = [0, 1]. There exists a sequence (fn)∞n=1 in C(I) that is bounded, equicontinuous, and
does not have a convergent subsequence.

(e) Set I = [0, 1], and let (fn)∞n=1 be a sequence of functions in C(I) that converges pointwise.

Furthermore, suppose that Lip(fn) ≤ 2 for every n. Then the numbers In =
∫ 1
0 fn(x) dx form

a convergent sequence in R.

Solution:

(a) TRUE. For an example, consider

fn(x) =

 0 x ∈ [0, n− 1],
1− |x− n| x ∈ (n− 1, n+ 1),
0 x ∈ [n+ 1,∞).

In other words, (fn) is a sequence of “tent functions” moving off to the right. Then (fn) is bounded
and equicontinuous. Since ‖fn − fm‖ ≥ |fn(n) − fm(n)| = |1 − 0| = 1 whenever m 6= n, we see that
(fn) cannot have a convergent subsequence.

(b) TRUE. Set fn = n. Then (fn) is equicontinuous, since Lip(fn) = 0 for every n. Moreover
‖fn − fm‖u = |n−m| so (fn) cannot have a convergent subsequence.

(c) TRUE. Set fn(x) = xn. Then (fn) is bounded since ‖fn‖u = 1. But (fn) converges pointwise to
the discontinuous function

f(x) =

{
0 x ∈ [0, 1),
1 x = 1.

If (fn) had a convergent subsequence, then this subsequence would have to have f as its limit point
too, which is impossible since the uniform limit of continuous functions must be continuous.

(d) FALSE. The AA theorem says that if (fn) is a bounded equicontinuous sequence of functions on
a compact set I, then (fn) must have a uniformly convergent subsequence.

(e) TRUE. (No motivation required here, but recall from Problem 1 on HW6 that (fn) must be
uniformly convergent. This means that the integrals must converge too.)

Note: It is NOT sufficient for (a), (b), and (c) to merely point out how the AA theorem is violated.
This simply says that the AA theorem does not preclude the existence of a sequence like the one
described. You need to do more to affirmatively prove existence. For instance, you can give an
example, like the ones above.

In grading problem 4, I did not give credit for a correct answer backed up by an invalid motivation.



Problem 5: (8 points) Let T be the integral operator that takes a function u ∈ C(R) and maps it to

[Tu](x) =

∫ x

0

(
(u(y))3 + cos(u(y))

)
dy + 1, x ∈ R.

(a) (5p) Let δ and B be positive numbers and set

Ω = {u ∈ C([0, δ]) : ‖u‖u ≤ B}.
Prove that if B and δ are small enough, then T : Ω → Ω is a contraction, as defined in
Definition 3.1 in the text book (with respect to the uniform norm, of course). Your numbers
B and δ do not need to be optimal, but if your estimate is unnecessarily crude, then some
small number of points might be deducted.

(b) (3p) Prove that the operator T is not a contraction as a map from C([0, δ]) to C([0, δ]) for any
δ > 0.

Solution:

(a) First we need to ensure that Tu ∈ Ω whenever u ∈ Ω. We have

‖Tu‖ = sup
x

∣∣∣∣∫ x

0

(
u(y)3 + cos(u(y))

)
dy + 1

∣∣∣∣ ≤ sup
x

(∫ x

0

(
B3 + 1

)
dy + 1

)
= δ(B3 + 1) + 1.

So we must have: δ(B3 + 1) + 1 ≤ B

Next we check if T is a contraction. Set f(t) = t3 + cos(t), so that [Tu](x) =
∫ x
0 f(u(y)) dy + 1. Then

[Tu](x)− [Tv](x) =

(∫ x

0
f(u(y)) dy + 1

)
−
(∫ x

0
f(v(y)) dy + 1

)
=

∫ x

0

(
f(u(y))− f(v(y))

)
dy.

Now observe that f ′(t) = 3t2 + sin(t). If |t| ≤ B, then |f ′(t)| ≤ 3B2 + 1. It follows that if u, v ∈ Ω,
then |f(u(y))− f(v(y))| ≤ (3B2 + 1)|u(y)− v(y)|. Now, for u, v ∈ Ω,

‖Tu−Tv‖ = sup
x

∣∣∣∣∫ x

0

(
f(u(y))− f(v(y))

)
dy

∣∣∣∣ ≤ sup
x

∣∣∣∣∫ x

0
(3B2 + 1)|u(y)− v(y)|dy

∣∣∣∣ ≤ δ(3B2+1)‖u−v‖.

We see that T is a contraction on Ω if: δ(3B2 + 1) < 1

The set of possible solutions includes the area below the curves below. E.g. B = 2 and δ = 0.05 works.

1 2 3 4 5

B

0

0.05

0.1

0.15

0.2

0.25

δ

δ=(B-1)/(B3+1)

δ=1/(3B2+1)

(b) Fix δ > 0. Set v = π/2 and un = π/2 + 2πn for n = 1, 2, 3, . . . . Then Tv = 1 + δ(π/2)3 and
Tun = 1 + δ(π/2 + 2πn)3. It follows that

‖Tun − Tv‖
‖un − v‖

=
δ(π/2 + 2πn)3 − δ(π/2)3

2πn
.

As n→∞, this ratio goes to infinity, so T cannot be a contraction.


