APPM5440 — Applied Analysis: Section exam 3

17:00 – 18:15, Nov. 30, 2012. Closed books.

WRITE YOUR NAME:

Fill out your answers to problems 1 and 2 directly on the problem sheet. No motivations required.

Write your answers to problems 3 and 4, with motivations, either on the exam, or on separate sheets.

Problem 1: (10p) No motivation required — please just write the answers. 2p per problem.

(a) Let X be any set, and let \mathcal{T} be a collection of subsets of X. Write the conditions that \mathcal{T} must satisfy in order to be a *topology* on X.

- (b) For which values of p is the Banach space ℓ^p reflexive? <u>Answer</u>:
- (c) Let X and Y be normed linear spaces. Mark the true statements:

	Check if true:
For $\mathcal{B}(X, Y)$ to be complete, it is sufficient for X to be complete.	
For $\mathcal{B}(X, Y)$ to be complete, it is sufficient for Y to be complete.	
For $\mathcal{B}(X, Y)$ to be complete, both X and Y must be complete.	

(d) Set $I = [-\pi, \pi]$ and X = C(I). Consider the operator $T \in \mathcal{B}(X)$ defined by $[Tf](x) = \int_{-\pi}^{\pi} \sin(x-y) f(y) \, dy, \qquad x \in I.$

Determine the range of T. Answer: ran(T) =

(e) Let c be a real number, let $X = \ell^2$, and define the operator $T \in \mathcal{B}(X)$ via $T(x_1, x_2, x_3, x_4, \ldots) = \left(\left(c + \frac{1}{1}\right)x_1, \left(c + \frac{1}{2}\right)x_2, \left(c + \frac{1}{3}\right)x_3, \left(c + \frac{1}{4}\right)x_4, \ldots\right).$ For which values of c is the range of T closed?

Answer:

Problem 2: (10p) Set I = [0, 2] and let X denote the space of continuous functions on I. Define a functional on X via $\varphi(f) = \int_0^2 x^2 f(x) dx$.

(a) (5p) Equip X with the norm $||f|| = \sup_{x \in I} |f(x)|$. Compute $||\varphi||_{X^*}$. Answer: $||\varphi||_{X^*} =$

(b) (5p) Equip X with the norm
$$||f|| = \int_0^2 |f(x)| dx$$
. Compute $||\varphi||_{X^*}$. Answer: $||\varphi||_{X^*} =$

Problem 3: (10p) Consider the map $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f((x_1, x_2)) = x_1$. We use the standard Euclidean norm on both \mathbb{R}^2 and on \mathbb{R} .

- (a) (5p) Prove that f is open.
- (b) (5p) Prove that f does not necessarily map closed sets to closed sets.

Problem 4: (10 points) Let X denote a Banach space.

- (a) (3p) Let $\{T_n\}_{n=1}^{\infty}$ be a sequence $\mathcal{B}(X)$. Define the following concepts:
 - (i) $\{T_n\}$ converges in norm.
 - (ii) $\{T_n\}$ converges strongly.
 - (iii) $\{T_n\}$ converges weakly.
- (b) (5p) Let $X = \ell^1$ with the usual norm. Consider the sequence of operators $\{T_n\}_{n=1}^{\infty}$ defined by $T_n(x_1, x_2, x_3, \dots) = (x_1, x_2, x_3, \dots, x_{n-1}, x_n, 0, 0, 0, \dots).$

Does $\{T_n\}$ converge in any of the three modes? Please motivate your answer.

(c) (2p) Let $\{T_n\}_{n=1}^{\infty}$ denote the same operators as in (b), but now acting on $X = \ell^{\infty}$. Does $\{T_n\}_{n=1}^{\infty}$ converge strongly?