
APPM 4720/5720: HW#1 prob. 2

a) CPQR Given Tolerance

We aim to construct a function that calculates the CPQR of a given matrix to a desired accuracy, let’s call
such a function: CPQR given tolerance. The inputs are an m x n target matrix A and a tolerance, acc. The
output will be a QR approximation of A along with an index vector ind such that ||A(:, ind)−QR||F ≤ acc.
To do this, we take advantage of a previously given function that calculates the rank k CPQR of A,
CPQR given rank. The proposed function follows this procedure:

Step 1: Initiate calculation of the rank p = min(m,n) CPQR of A (using CPQR given rank)
Step 2: For each vector added to Q (say the jth) compare the residual to acc (check: ||Q(:, j + 1 : n)||F ).
Step 3: Exit calculation if ||Q(:, j + 1 : n)||F ≤ acc and return Q, R, ind.

Notes: The rank of A cannot exceed p = min(m,n), as such the rank of our approximation should be
less than or equal to p. Any matrix norm may be used to check error. We used the Frobenius norm
because of its simplicity to calculate along with the resulting conservative estimates. During calcula-
tion, CPQR given rank overwrites the input A with Q, revised iterates of the original matrix are stored
in columns not yet orthonormalized hence why ||Q(:, j + 1 : n)||F is relevant (for a more concise, infor-
mative description, please see the course notes). There are many ways to implement this procedure, some
better than others. We strive to minimize the movement of data and rely on BLAS2 and BLAS3 operations
(see problem 3) as well as FLOP count. One could also use Householder relections or Givens rotations to
calculate the QR factorization. A good discussion of this is given in Section 5.2 of Matrix Computations,
4th edition by Gene Golub and Charles Van Loan.

b) SVD Given Tolerance

We aim to retrieve the partial SVD of A to a given accuracy. The construction of this function relies on part
(a). A nifty property of the error term from our QR factorization allows us to avoid needless computation.

Recall:
A = QRP∗ + (Error)P∗ ⇒ A ≈ QRP∗ + E, where ||E||F ≤ acc. (Since the inverse of a unitary matrix
is equal to its adjoint, P∗ = P−1)

The SVD of RP∗ is then calculated and Q is right multiplied by the left singular vectors of RP∗. This
does not change E in the approximation. Our program follows this procedure:

Step 1: Calculate CPQR to given specified tolerance using (a)
Step 2: Calculate the inverse permutation matrix P∗

Step 3: Find the SVD of RP∗, this forms Û,D,V
Step 4: Matrix-Matrix multiply Q by Û (from the SVD in step 3), this forms U
Step 5: Return U,D,V

Notes: Be careful to calculate the adjoint matrix of V when required (A ≈ UDV∗, A 6≈ UDV). To
test your program, generate some large matrices and play with accuracy levels. It can be fun to watch how
large, ill-conditioned (constructed to have a high condition number) matrices interact with the algorithms.
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