Homework set 1 — APPM4720/5720, Spring 2016

Problem 1: Let A be an m x n matrix, set p = min(m, n), and suppose that the singular value decomposition of
A takes the form

ey
Let k be an integer such that 1 < k < p and let Ay, denote the truncation of the SVD to the first k& terms:
A, =U(1:k)D(1:k1:k)V(,1:k)"

Recall the definitions of the spectral and Frobenius norms:

A = V) D V*.
mxmn mXp pXp pxXn

1/2

R - T (AR
H H_Sup HX”) an H ”F_ ZZ‘ (7'7.7)‘

x#0 i=1 j=1

Prove directly from the definitions of the norms that
IA = Apll = or 11

and that
1/2

_ 2
IA—Alle={ > o

j=k+1

Problem 2: On the course webpage, download the file hwO1p2 .m. This file contains an implementation of the
column pivoted QR algorithm that computes a rank-k approximation to a matrix, for any given k. Your task is now
to do two modifications to the code:

(a) Starting with the function CPQR_given_rank write a new function with calling sequence
[Q,R,1ind] = CPQR_given_tolerance (A, acc)

that takes as input an accuracy, and computes a low-rank approximation to a matrix that is accurate to
precision “acc”.

(b) Write a function with calling sequence
[U,D,V] = SVD_given_tolerance (A,acc)
that computes a diagonal matrix D, and orthonormal matrices U and V such that
IIA —UDV*|| <,

where ¢ is the given tolerance. The idea is to use the function CPQR_given_tolerance (A, acc) that
you created in part (a).

Please hand in a print-out of the code that you created.

Extra problem: The file hw01p2 .m creates a plot that shows the accuracies of two low-rank approximations: The
truncated SVD on the one hand, and the truncated QR on the other. Let me encourage you to play around with this
a bit, try different matrices and see how the approximations errors compare. There is no need to hand anything in!

2

Problem 3: In this example, we investigate the effect blocking has on execution time of matrix computations.

(a) Suppose that we are given two n X n matrices B and C and that we seek to compute A = BC. We could

do this in Matlab either by just typing A = B=«C, or, we could write a loop

fori=1:n

A(:,1) = BxC(:,1)

end for
The code hw01p3.millustrates the two techniques. It turns out that while the two methods are mathemat-
ically equivalent, doing it via a loop is much slower. In this problem, please measure the time 7}, required
for several different values of n. Test the hypothesis that 7, = C n? by plotting your measure valued of

T, versus n in a log-log-diagram. Fit a straight line through the points, and estimate C. Hand in the graph
and the values of C' that you estimate for the two methods.

(b) Repeat the problem in (a), but now compare three different matrix factorization algorithms:
- [L,U] = 1lu(A)
This factorization can be blocked. It is fast, but not good for low-rank approximation.

- [Q,R,J] = gr(A,’vector’)
Column pivoted QR factorization — intermediately fast, and good for low-rank approximation.
- [U,D,V] = svd(A)

Singular value decomposition — slowest, but excellent for low-rank approximation.

(We used LU here as a stand-in for non-pivoted QR factorization, since I think there is no non-pivoted QR factor-
ization built in to Matlab. If I am wrong and you find it, then please use that instead!)

