
Homework set 1 — APPM4720/5720, Spring 2016

Problem 1: Let A be an m × n matrix, set p = min(m,n), and suppose that the singular value decomposition of
A takes the form

(1)
A = U D V∗.

m× n m× p p× p p× n
Let k be an integer such that 1 ≤ k < p and let Ak denote the truncation of the SVD to the first k terms:

Ak = U(:, 1 : k)D(1 : k, 1 : k)V(:, 1 : k)∗.

Recall the definitions of the spectral and Frobenius norms:

‖A‖ = sup
x6=0

‖Ax‖
‖x‖

, and ‖A‖F =

 m∑
i=1

n∑
j=1

|A(i, j)|2
1/2

.

Prove directly from the definitions of the norms that

‖A− Ak‖ = σk+1

and that

‖A− Ak‖F =

 p∑
j=k+1

σ2j

1/2

.

Problem 2: On the course webpage, download the file hw01p2.m. This file contains an implementation of the
column pivoted QR algorithm that computes a rank-k approximation to a matrix, for any given k. Your task is now
to do two modifications to the code:

(a) Starting with the function CPQR given rank write a new function with calling sequence
[Q,R,ind] = CPQR given tolerance(A,acc)

that takes as input an accuracy, and computes a low-rank approximation to a matrix that is accurate to
precision “acc”.

(b) Write a function with calling sequence
[U,D,V] = SVD given tolerance(A,acc)

that computes a diagonal matrix D, and orthonormal matrices U and V such that

‖A−UDV∗‖ ≤ ε,
where ε is the given tolerance. The idea is to use the function CPQR given tolerance(A,acc) that
you created in part (a).

Please hand in a print-out of the code that you created.

Extra problem: The file hw01p2.m creates a plot that shows the accuracies of two low-rank approximations: The
truncated SVD on the one hand, and the truncated QR on the other. Let me encourage you to play around with this
a bit, try different matrices and see how the approximations errors compare. There is no need to hand anything in!

1

2

Problem 3: In this example, we investigate the effect blocking has on execution time of matrix computations.

(a) Suppose that we are given two n × n matrices B and C and that we seek to compute A = BC. We could
do this in Matlab either by just typing A = B*C, or, we could write a loop

for i = 1 : n

A(:,i) = B*C(:,i)

end for
The code hw01p3.m illustrates the two techniques. It turns out that while the two methods are mathemat-
ically equivalent, doing it via a loop is much slower. In this problem, please measure the time Tn required
for several different values of n. Test the hypothesis that Tn = C n3 by plotting your measure valued of
Tn versus n in a log-log-diagram. Fit a straight line through the points, and estimate C. Hand in the graph
and the values of C that you estimate for the two methods.

(b) Repeat the problem in (a), but now compare three different matrix factorization algorithms:
– [L,U] = lu(A)

This factorization can be blocked. It is fast, but not good for low-rank approximation.
– [Q,R,J] = qr(A,’vector’)

Column pivoted QR factorization — intermediately fast, and good for low-rank approximation.
– [U,D,V] = svd(A)

Singular value decomposition — slowest, but excellent for low-rank approximation.

(We used LU here as a stand-in for non-pivoted QR factorization, since I think there is no non-pivoted QR factor-
ization built in to Matlab. If I am wrong and you find it, then please use that instead!)

