Homework set 1 — APPM4720/5720, Spring 2016

Problem 1: Let A be an $m \times n$ matrix, set $p = \min(m, n)$, and suppose that the singular value decomposition of A takes the form

(1)
$$\mathbf{A} = \mathbf{U} \quad \mathbf{D} \quad \mathbf{V}^*.$$
$$m \times n \qquad m \times p \quad p \times p \quad p \times n$$

Let k be an integer such that $1 \le k < p$ and let A_k denote the truncation of the SVD to the first k terms:

$$\mathbf{A}_k = \mathbf{U}(:, 1:k) \, \mathbf{D}(1:k, 1:k) \, \mathbf{V}(:, 1:k)^*.$$

Recall the definitions of the spectral and Frobenius norms:

$$\|\mathbf{A}\| = \sup_{\mathbf{x}\neq\mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}, \quad \text{and} \quad \|\mathbf{A}\|_{\mathrm{F}} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |\mathbf{A}(i,j)|^2\right)^{1/2}.$$

Prove directly from the definitions of the norms that

$$\|\mathbf{A} - \mathbf{A}_k\| = \sigma_{k+1}$$

and that

$$\|\mathbf{A} - \mathbf{A}_k\|_{\mathrm{F}} = \left(\sum_{j=k+1}^p \sigma_j^2\right)^{1/2}$$

Problem 2: On the course webpage, download the file hw01p2.m. This file contains an implementation of the column pivoted QR algorithm that computes a rank-k approximation to a matrix, for any given k. Your task is now to do two modifications to the code:

(a) Starting with the function CPQR_given_rank write a new function with calling sequence

[Q,R,ind] = CPQR_given_tolerance(A,acc)

that takes as input an accuracy, and computes a low-rank approximation to a matrix that is accurate to precision "acc".

(b) Write a function with calling sequence

that computes a diagonal matrix \mathbf{D} , and orthonormal matrices \mathbf{U} and \mathbf{V} such that

$$\|\mathbf{A} - \mathbf{U}\mathbf{D}\mathbf{V}^*\| \le \varepsilon,$$

where ε is the given tolerance. The idea is to use the function CPQR_given_tolerance (A, acc) that you created in part (a).

Please hand in a print-out of the code that you created.

Extra problem: The file hw01p2.m creates a plot that shows the accuracies of two low-rank approximations: The truncated SVD on the one hand, and the truncated QR on the other. Let me encourage you to play around with this a bit, try different matrices and see how the approximations errors compare. There is no need to hand anything in!

Problem 3: In this example, we investigate the effect *blocking* has on execution time of matrix computations.

(a) Suppose that we are given two $n \times n$ matrices **B** and **C** and that we seek to compute $\mathbf{A} = \mathbf{BC}$. We could do this in Matlab either by just typing $A = B \star C$, or, we could write a loop

The code hw01p3.m illustrates the two techniques. It turns out that while the two methods are mathematically equivalent, doing it via a loop is much slower. In this problem, please measure the time T_n required for several different values of n. Test the hypothesis that $T_n = C n^3$ by plotting your measure valued of T_n versus n in a log-log-diagram. Fit a straight line through the points, and estimate C. Hand in the graph and the values of C that you estimate for the two methods.

,i)

- (b) Repeat the problem in (a), but now compare three different matrix factorization algorithms:
 - [L, U] = lu(A)

This factorization can be blocked. It is fast, but not good for low-rank approximation.

 [Q,R,J] = qr(A, 'vector') Column pivoted QR factorization — intermediately fast, and good for low-rank approximation.
[U,D,V] = svd(A)

Singular value decomposition — slowest, but excellent for low-rank approximation.

(We used LU here as a stand-in for non-pivoted QR factorization, since I think there is no non-pivoted QR factorization built in to Matlab. If I am wrong and you find it, then please use that instead!)