
Homework set 3 — APPM4720/5720, Spring 2016

Problem 1: Suppose that A is a real n × n symmetric matrix with eigenpairs {λj , vj}nj=1, ordered so that |λ1| ≥
|λ2| ≥ · · · ≥ |λn|. Define a sequence of vectors via x0 = randn(n, 1), and then xp = Axp−1, so that xp = Apx0.

(a) Set β = |λ2|/|λ1| and yp = (1/‖xp‖) xp. Assume that λ1 = 1 and that β < 1. Prove that as p → ∞, the
vectors {yp} converge either to v1 or to −v1.

(b) What is the speed of convergence of {yp}?
(c) Assume again that β = |λ2|/|λ1| < 1, but now drop the assumption that λ1 = 1. Prove that your answers

in (a) and (b) are still correct, with the exception that if λ1 is negative, then it is the vector (−1)pyp that
converges instead.

In solving this problem, you are allowed to use that when x0 is drawn from a Gaussian distribution (which is what
the Matlab command randn does) it has a series expansion x0 =

∑n
j=1 cj vj where cj 6= 0 with probability 1. (In

fact, one can prove that each cj is a random variable drawn from a normalized Gaussian distribution.)

Problem 2: The file hw03p02.m contains implementations of the Lanczos and Arnoldi procedures, and compares
the accuracy obtained from these to the randomized SVD. But as you run the code, you will notice that while
Lanczos and Arnoldi initially perform well, they quickly lose all accuracy. Lanczos fails fast, and Arnoldi fairly
fast. The reason for this failure is the loss of orthonormality among the orthonormal vectors constructed. Modify
the code to fix this problem. Once the subroutines that implement Lanczos and Arnoldi have been fixed, run the
following numerical experiments:

(a) Pick some symmetric real matrix A. Run a test that compares RSVD to the full SVD and to Lanczos.

(b) Pick some normal real matrix A. Run a test that compares RSVD to the full SVD and to Arnoldi.

(c) Pick some non-normal real matrix A. Run a test that compares RSVD to the full SVD and to Arnoldi.

For text matrices, you are welcome to use the matrices provided in the code, or some other matrices whose singular
values decay that you find of interest. For each subproblem, hand in a print-out of the error graphs. Also include a
description of how you edited the code, and a printout of the corrected Lanczos and Arnoldi codes.

Problem 3: Let A be an m× n matrix whose numerical rank is approximately k.

(a) Implement a code that computes the column ID with calling sequence

[Js, Z] = ID col(A, k),

that produces an approximate rank-k factorization A ≈ A(:, Js)Z. Use the algorithm based on the column
pivoted QR factorization described in Figure 4.1 of the course notes. Hand in a print-out of your code.

(b) Implement a code that computes the CUR decomposition with calling sequence

[Is, Js, U] = ID col(A, k),

that produces a rank-k CUR A ≈ A(:, Js)UA(Is, :). Use the algorithm in Figure 4.4 of the course notes.
Hand in a print-out of your code.

(c) [Optional problem.] Read Remark 4.6 in the course notes carefully. Then try to construct a matrix for
which “Method 2” would either fail outright, or lead to a very numerically bad CUR. Hand in a description
of the matrix, or code that generates it.

1

