Suppose A is an $m \times n$ matrix of approximate rank k, and that we have identified two index sets I_s and J_s such that the matrices

$$C = A(:, J_s)$$
$$R = A(I_s, :)$$

hold k columns/rows that approximately span the column/row space of A. You may assume that C and R both have rank k (in other words, the index vectors J_s and I_s are not very bad). Then

$$A \approx CC^\dagger AR^\dagger R,$$

and the optimal choice for the “U” factor in the CUR decomposition is,

$$U = C^\dagger AR^\dagger.$$

Set $X = CC^\dagger$.

(a) Suppose that C has SVD

$$C = UDV^*.$$

Prove that $X = UU^*$.

Solution: Let $C = UDV^*$. Then

$$X = CC^\dagger$$
$$= UDV^* (UDV^*)^\dagger$$
$$= UDV^* VD^\dagger U^*$$
$$= UDD^\dagger U^*$$
$$= UDD^{-1} U^*$$
$$= UU^*.$$

Note that $D^\dagger = D^{-1}$ since C is $m \times k$ and of rank k.

(b) Suppose that C has the QR factorization

$$CP = QS$$

Prove that $X = QQ^*$. (Observe that S is necessarily invertible, since C has rank k. You can then prove that $C^\dagger = PS^{-1}Q^*$.)
Solution: \(CP = QS \implies C = QSP^* \) since \(PP^* = P^*P = I \). Then
\[
X = CC^\dagger = QSP^*(QSP^*)^\dagger = QSP^*PS^\dagger Q^* = QSS^\dagger Q^* = QSS^{-1}Q^* = QQ^*
\]

Note that \(S^\dagger = S^{-1} \) since \(C \) is \(m \times k \) and of rank \(k \).

(c) Prove that \(X \) is the orthogonal projection onto \(\text{Col}(C) \).

Solution: First, in order for \(X \) to be an orthogonal projection, it must satisfy \(X = X^* \) and \(X^2 = X \).

Let \(C = UDV^* \) be the SVD of \(C \) as in part(a). Then \(X = CC^\dagger = UU^* \) and \(X^* = (UU^*)^* = UU^* = X \).

Moreover, \(XX^* = X^2 = (UU^*)(UU^*) = UU^* = X \), and so \(X \) is an orthogonal projection. It is also straightforward to check \(||X|| = 1 \) since \(U \) is orthogonal.

Now, it is left to show that \(X \) projects onto \(\text{Col}(C) \). Recall the definition of the Moore-Penrose pseudo-inverse: \(C^\dagger = (C^*C)^{-1}C^* \), where \(C \) is \(m \times k \) with \(k \) linearly independent columns and decompose the space \(C = \text{ran}(C) \oplus \ker(C^*) \). Let \(v \in \text{ran}(C) = \text{col}(C) \), then there exists a \(u \) such that \(v = Cu \). Furthermore,
\[
Xv = CC^\dagger v = C(C^*C)^{-1}C^*v = C(C^*C)^{-1}C^*Cu = Cu = v.
\]

Suppose \(w \in \ker(C^*) \), then \(C^*w = 0 \).
\[
Xx = CC^\dagger w = C(C^*C)^{-1}C^*w = 0.
\]
Since \(X \) projects element from the range of \(C \) to itself and elements from the kernel to the 0 element, \(X \) is a projection operator onto \(\text{col}(C) \).

(d) Suppose that \(A \) has precisely rank \(k \) and that \(C \) and \(R \) are both of rank \(k \). Prove that then
\[
C^\dagger AR^\dagger = (A(I_s, J_s))^{-1}.
\]

Solution: Let \(\text{rank}(A) = \text{rank}(C) = \text{rank}(R) = k \) and recall that \(C = A(:, J_s) \) and \(R = A(I_s, :) \). Thus, \(C(I_s, :) = A(I_s, J_s) \) is a \(k \times k \) matrix of rank \(k \), implying \(A(I_s, J_s) \) is invertible. Moreover, since \(\text{rank}(A) = k \), we have from class that
\[A = CA(I_s, J_s)^{-1}R, \]

the double sided ID.

We will digress for a moment and reprove it here. Since \(A \) is precisely of rank \(k \), it admits a factorization

\[A = CZ, \]

where \(C = A(:, J_s) \) and \(Z \) contains some the \(k \times k \) identity matrix as a sub-matrix as well as the expansion coefficients used to build \(A \) from the skeleton columns contained in \(C \). \(A \) also admits the factorization

\[A = XR \]

where \(R = A(I_s, :) \) consisting of \(k \) rows of \(A \), where \(X \) also contains the \(k \times k \) identity with a different set of expansion coefficients used to build \(A \). Taking the \(I_s \) rows of the Column-ID, we have

\[A(I_s, :) = C(I_s, :)Z = A(I_s, J_s)Z, \]

it must be the case that

\[Z = (A(I_s, J_s))^{-1}A(I_s, :). \]

Thus,

\[A = CZ = C(A(I_s, J_s))^{-1}A(I_s, :) = C(A(I_s, J_s))^{-1}R. \]

Now, left multiplying both sides by \(C^\dagger \) and right multiplying by \(R^\dagger \) yields

\[C^\dagger AR^\dagger = C^\dagger CA(I_s, J_s)^{-1}RR^\dagger = A(I_s, J_s)^{-1} \]

since \(C^\dagger \) is the left inverse of \(C \) and \(R^\dagger \) is the right inverse of \(R \).