Homework set 5 — APPM4720/5720, Spring 2016

Problem 1: The objective of this problem is to computationally investigate the error incurred by truncating mul-
tipole expansions. Consider the following geometry: Let €2 and €2, be two well-separated boxes with centers ¢
and c,. Let x €), be a source point and let y € {2, be a target point. Consider the error function

e(P) = sup{‘log Ix —y| —Bp(x, ¢;)Zp(cr, c;) Cp(cs, ¥)|: XEQyy € QT}

where P is the length of the multipole expansion, and where

Cp(cs, y) eC(P+)x1 maps a source to an outgoing expansion
Zp(c,, c5) eCPHDx(P+1) maps an outgoing expansion to an incoming expansion
Bp(x, c;) eCX(P+D) maps an incoming expansion to a target

(a) Estimate e(P) experimentally for the geometry:

Oy =[-1,1] x [-1,1], Q, =[3,5] x [-1,1].

(b) Fit the function you determined in (a) to a curve e(P) ~ c - of’. What is a?

(c) Is the supremum for a given P attained for any specific pair {x, y}?
If so, find (experimentally) the pair. Does the choice depend on P?

(d) Repeat questions (a), (b), (c) for a different geometry of your choice. (Provide a picture.)

(e) (Optional) Can you support your observations with analysis?

Hint: The file main_T_ops_are_fun.m (provided inside tutorialfmm. zip) might be useful.

Problem 2: The objective of this exercise is to familiarize yourself with the provided prototype FMM. The ques-
tions below refer to the basic FMM provided in the file main_fmm.m when executed on a uniform particle distribu-
tion. For this case, precompute only the translation operators T (), T(f) and T (i.e. set flag_precomp=0).

(a) Estimate and plot the execution time of the FMM for the choices
Niot = 1000, 2000, 4000, 8000, 16 000, 32000, 64 000, 128 000, 256 000.

(If you have difficulties running the larger problems, then you can skip them.) Set nmax=50. Provide plots
that track the following costs:

tiot total execution time, including initialization.

tinit cost of initialization (computing the tree, the object T_OPS, etc.).
tofs cost of applying T(ofs),

tofo cost of applying T,

tito cost of applying T().

tig cost of applying T (),

i cost of applying T,

telose cost of directly evaluating close range interactions.

(b) Repeat exercise (a) but now for a few different choices of nmax. Which nmax leads to the smallest total
execution time tyo? Provide a new plot of the times required for this optimal choice.
1

2

Problem 3: In this exercise, you will numerically estimate the probability density function for the errors produced
by two randomized algorithms, which are both implemented in the script HW05 . m. The two algorithms are:

®

(i1)

(a)

(b)

(©

(d)

A Monte Carlo algorithm for estimating the value of w. The idea is to draw n points from a uniform
distribution on € = [—1, 1]2. Let n;, denote the number of points that fall inside the circle of radius one
centered at the origin. Since the area of this circle is 7, and the area of the box is 4, we expect that the ratio
nin/n should approach 7 /4 as n increases. The error is e = 4 n;, /n — .

The Randomized SVD describe in Figure 2.1 in the course notes. The objective is to compute a a rank-k
approximate SVD. The error is e = |A — UDV™||.

Consider the Monte Carlo algorithm for n = 1 000. Write a script that executes the algorithm a m times, to
produce a vector {e;}" | of measured errors. After you are done, use your vector of measured errors create
an approximate plot of the probability density function of the error. The Matlab command histogram
might be useful.

Now estimate the variance of the error as a function of n. Consider the values n = 10, 102, 102, 10, 10°.
For each value of n, run the MC algorithm m times, to get a vector {e; };”Zl of errors. The estimate of the
variance is then s = s(n) = (1/(m — 1)) 327", e?. Create a plot that investigates whether /s scales as
1/y/n, as claimed.

Repeat exercise (a), but now do it the RSVD algorithm. Do not use the power method here, so ¢ = 0.
Consider the choices of parameter p = 0, p = 10, p = 20, p = 30. For each value of p, create a plot of the
estimated probability density function for the error. Hand in plots of the four probability density functions.

Repeat exercise (c), but now use the power method with ¢ = 2. Hand in plots of the four probability density
functions.

In each exercise, choose m to be as large as you have patience for! The larger m is, the better your estimate will
be, but of course the execution time will take longer. As always when coding, save any big runs for after your code
works well. In other words, while developing, use moderate values of m.

Note: The distribution of the error in the Monte Carlo experiments is known analytically. Observe that each
“draw” of a point can be interpreted as a coin toss with a biased coin (probability of, say, heads being 7 /4 and the
probability of tail 1 — 7/4). The number of heads out of n tosses follows the so called “binomial distribution.” You
can look up the variance for this distribution in any standard reference on probability (or Wikipedia). It might be
fun to plot the exact pdf along with your estimate of the pdf.

