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Course objectives:

The purpose of this course is to teach efficient algorithms for processing very large
datasets.

Specifically, we are interested in algorithms that are based on low rank approximation.
Given an m× n matrix A, it is sometimes possible to build an approximate factorization

A ≈ E F.
m× n m× k k × n

In the applications we have in mind, m and n can be very large (think m,n ∼ 106 for
dense matrices, and much larger for sparse matrices), and k � min(m,n).

Factorizing matrices can be very helpful:
• Storing A requires mn words of storage.
Storing E and F requires km + kn words of storage.

• Given a vector x, computing Ax requires mn flops.
Given a vector x, computing Ax = E(Fx) requires km + kn flops.

• The factors E and F are often useful for data interpretation.



Examples of data interpretation via matrix factorization:

• Principal Component Analysis: Form an empirical covariance matrix from some
collection of statistical data. By computing the singular value decomposition of the
matrix, you find the directions of maximal variance.

• Finding spanning columns or rows: Collect statistical data in a large matrix. By
finding a set of spanning columns, you can identify some variables that “explain” the
data. (Say a small collection of genes among a set of recorded genomes, or a small
number of stocks in a portfolio.)

• Relaxed solutions to k-means clustering: Partition n observations into k clusters in
which each observation belongs to the cluster with the nearest mean. Relaxed
solutions can be found via the singular value decomposition.

• PageRank: Form a matrix representing the link structure of the internet. Determine
its leading eigenvectors. Related algorithms for graph analysis.

• Eigenfaces: Form a matrix whose columns represent normalized grayscale images
of faces. The “eigenfaces” are the left singular vectors.



Main components of the course:
• Matrix factorization algorithms designed for a modern computing environment
We will discuss algorithms designed to scale correctly for very large matrices when
executed on multicore processors, GPUs, parallel computers, distributed (“cloud”)
computers, etc. The key is to minimize communication and energy consumption (as
opposed to flops). We will extensively explore new randomized algorithms.

• Applications of matrix factorization
We will discuss a range of applications from computational statistics, machine
learning, image processing, etc. Techniques include: Principal Componen Analysis,
Latent Semantic Indexing, Linear Regression, PageRank, etc.

• The idea of randomized projections for dimension reduction
So called Johnson-Lindenstrauss techniques are useful in linear algebra, algorithm
design, and data analysis. We will explore mathematical properties of randomized
projections, and their use in different contexts.

• Other useful “scalable” algorihms
Fast Fourier Transform — an extremely versatile and powerful tool that parellelizes
well. Applications to signal processing, solving PDEs, image compression, etc.
Fast Multipole Method — another powerful and scalable algorithm with applications
to solving PDEs, simulating gravitation and electrostatics, and much more.



Week: Material covered:
1: Low-rank approximation – the problem formulation and a brief survey of applications. The

Singular Value Decomposition (SVD) and the Eckart-Young theorem on optimality.
2: Power iterations, and Krylov methods. Gram-Schmidt and the QR factorization. How to

cheaply get an approximate SVD from a QR factorization.
3: Interpretation of data. The interpolative decomposition (ID) and the CUR decomposition.
4,5: Randomized methods for computing low-rank approximations. Connection to QuickSort

and Monte Carlo.
6,7: Applications of low-rank approximation: Principal Component Analysis (PCA), Latent Se-

mantic Indexing (LSI), eigenfaces, pagerank, potential evaluation.
8,9: Linear regression problems. L2 and L1 minimization. Brief introduction to linear program-

ming.
10: Johnson-Lindenstrauss methods; random projections as a tool for dimensionality reduc-

tion.
11: Nearest neighbor search.
12: Clustering and the “k-means” problem.
13: The Fast Fourier Transform.
14: The Fast Multipole Method.
15: Project presentations.

Note: This is a new course! The actual timeline may deviate from the target listed above
— some topics may need more or less time.



Top Ten Algorithms of the 20th Century

1. Monte Carlo Method (1946):
2. Simplex Method for linear programming (1947):
3. Krylov methods (1950):
4. Decompositional approach to matrix computations (1951):
5. Fortran optimizing compiler (1957):
6. QR algorithm for eigenvalues (1959):
7. Quicksort (1962):
8. Fast Fourier Transform (1965):
9. Integer relation detection algorithm (1977): ???

10. The Fast Multipole Method (1987):

Algorithms set in red will be discussed directly in class.
Algorithms set in blue will not be covered in any detail, but will be touched upon briefly.

From Jan./Feb. 2000 issue of Computing in Science & Engineering, as compiled by Jack Dongarra and Francis Sullivan —

posted on course webpage.



Many of the algorithms we will describe are based on 20th century algorithms, but have
been re-engineered to better solve 21st century problems.

Specifically, the course will extensively discuss randomized methods for matrix
factorizations. These were developed in response to the need to process matrices for
which classical algorithms were not designed.

Difficulties include:
• The matrices involved can be very large (size 1 000000× 1 000000, say).
• Constraints on communication — few “passes” over the data.

• Data stored in slow memory.
• Parallel processors.
• Streaming data.

• Lots of noise — hard to discern the “signal” from the “noise.”
High-quality denoising algorithms tend to require global operations.
Can you trade accuracy for speed?



Question: Computers get more powerful all the time. Can’t we just use the algorithms
we have, and wait for computers to get powerful enough?

Observation 1: The size of the problems increase too! Tools for acquiring and storing
data are improving at an even faster pace than processors.

The famous “deluge” of data: documents, web searching, customer databases,
hyper-spectral imagery, social networks, gene arrays, proteomics data, sensor networks,
financial transactions, traffic statistics (cars, computer networks), . . .

Observation 2: Good algorithms are necessary. The flop count must scale close to
linearly with problem size.

Observation 3: Communication is becoming the real bottleneck. Robust algorithms
with good flop counts exist, but many were designed for an environment where you have
random access to the data.

• Communication speeds improve far more slowly than CPU speed and storage
capacity.

• The capacity of fast memory close to the processor is growing very slowly.
• Much of the gain in processor and storage capability is attained via parallelization.
This poses particular challenges for algorithmic design.
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Logistics



Prerequisites: To take this course, it is essential that you know linear algebra well. A
course such as APPM3310 (Matrix Methods) or the equivalent is absolutely necessary,
as we will frequently use matrix factorizations such as the SVD and the QR. Familiarity
with basic probability is also important (Gaussian and Bernoulli random numbers; the
concepts of expectations, standard deviations, etc). Basic numerical analysis (accuracy,
stability, floating point arithmetic, etc) is assumed.

Knowledge of basic programming in Matlab is required, as is basic knowledge of
analysis of algorithms such as estimating asymptotic complexity, etc.

Finally, some familiarity with Fourier methods is very helpful. For one part of the course,
knowledge of basic electrostatics and the properties of the Laplace and Helmholtz
equations will be assumed, but this material covers only one or two weeks, so this is not
an essential pre-requisite.



Grading: There will be no regular exams. Instead, your grade will be based on projects,
homeworks, etc, as follows:
• 20% for scribing.
• 30% for regular homeworks.
• 10% for the reference homework.
• 40% for a final project.

We will use a Google Spreadsheet to coordinate the scribing and the reference
homeworks. You will receive an email inviting you to edit this spreadsheet in the first
week. Please choose two lectures and one homework among the empty slots and enter
your name.

Important: If you have not received the email invitation to edit the Google spreadsheet by
Thursday, January 14, then please contact the instructor via email.

You can keep track of your scores for each component of the course that has been
graded via the course D2L page. Please allow for at least 7 days after the deadline for
scores to show up.



Text: The course is defined by the material covered in class, and there is no “official”
text book. Course notes and links to papers discussed in class will be posted on the
course website.

Lecture notes / scribing: As a participant in the course, you will be required to sign up
for two lectures for which you will serve as a scribe. During the lecture when you are a
scribe, you will take careful notes, type them up after the class (using latex if at all
possible), and email them to the instructor within 48h. They will then be posted to the
course webpage.

A template for the scribe notes can be downloaded from the course webpage.



Homeworks: There will be 6 homeworks, due at the end of weeks 3, 5, 7, 9, 11, and 13.
Working in groups is allowed and encouraged, with the maximal group size being 3 for
4720 and 2 for 5720.

Each individual in the course (not each group!) will be required to sign up for one
homework problem and be responsible for producing a “reference solution.” This should
be a typed solution, and should include Matlab codes where appropriate. The instructor
will review the submitted reference homework, and suggest edits/corrections where
appropriate. Once the reference homework is complete, it will be posted to the course
webpage as a solution. You are allowed to work in your homework group to prepare the
reference homework, but only one student will get credit for the problem.

Each regular homework set will be worth 5% of the grade. In addition, your reference
homework problem will be worth 10%.



Project: Your grade in this course will to 40% be based on a final project. You are
allowed (and encouraged!) to work in pairs on the project. Groups of three students
could be allowed if the project chosen is particularly labor intensive, but this requires
instructor permission.

In the last week of the course, each group is expected to deliver a brief (10 – 15
minutes) presentation of the project, and to hand in a final project report.

A number of suggested projects will be listed on the course webpage. You are also very
welcome to think of projects on your own; if you want to go with this option, you need to
discuss the chosen project with the instructor to get it approved. Please initiate this
discussion no later than March 15, if possible.

The expectation is that the project is based on material covered in the first two thirds of
the course, and will be completed during the last third. You must pick a project and
notify the instructor of what your project is by March 19.


