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Matrix factorizations and low rank approximation
The first section of the course provides a quick review of basic concepts from linear algebra that we will use
frequently. Note that the pace is fast here, and assumes that you have seen these concepts in prior course-work. If
not, then additional reading on the side is strongly recommended!

1. NOTATION, ETC

1.1. Norms. Let x = [x1, x2, . . . , xn] denote a vector in Rn or Cn. Our default norm for vectors is the Euclidean
norm

‖x‖ =

 n∑
j=1

|xj |2
1/2

.

We will at times also use `p norms

‖x‖p =

 n∑
j=1

|xj |p
1/p

.

Let A denote an m×n matrix. For the most part, we allow A to have complex entries. We define the spectral norm
of A via

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
x6=0

‖Ax‖
‖x‖

.

We define the Frobenius norm of A via

‖A‖F =

 m∑
i=1

n∑
j=1

|A(i, j)|2
1/2

.

Observe that
‖A‖ ≤ ‖A‖F ≤

√
min(m,n) ‖A‖.

1.2. Transpose and adjoint. Given an m× n matrix real A, the transpose At is the n×m matrix B with entries

B(i, j) = A(j, i).

If A is complex, then the natural analogue of the transpose is the adjoint, which is the complex conjugate of the
transpose

A∗ = At.

1.3. Subspaces. Let A be an m× n matrix.

• The row space of A is denoted row(A) and is defined as the subspace of Rn spanned by the rows of A.
• The column space of A is denoted col(A) and is defined as the subspace of Rm spanned by the columns of
A. The column space is the same as the range or A, so col(A) = ran(A).
• The nullspace or kernel of A is the subspace ker(A) = null(A) = {x ∈ Rn : Ax = 0}.

1.4. Special classes of matrices. We use the following terminology to classify matrices:

• An m× n matrix A is orthonormal if its columns form an orthonormal basis, i.e. A∗A = I.
• An n× n matrix A is normal if AA∗ = A∗A.
• An n× n real matrix A is symmetric if At = A.
• An n× n matrix A is self-adjoint if A∗ = A.
• An n× n matrix A is skew-adjoint if A∗ = −A.
• An n× n matrix A is unitary if it is invertible and A∗ = A−1.
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2. LOW RANK APPROXIMATION

2.1. Exact rank deficiency. Let A be an m× n matrix. Let k denote an integer between 1 and min(m,n). Then
the following conditions are equivalent:

• The columns of A span a subspace of Rm of dimension k.
• The rows of A span a subspace of Rn of dimension k.
• The nullspace of A has dimension n− k.
• The nullspace of A∗ has dimension m− k.

If A satisfies any of these criteria, then we say that A has rank k. When A has rank k, it is possible to find matrices
E and F such that

A ≈ E F.
m× n m× k k × n

Having access to such factors E and F can be very helpful:

• Storing A requires mn words of storage.
Storing E and F requires km+ kn words of storage.

• Given a vector x, computing Ax requires mn flops.
Given a vector x, computing Ax = E(Fx) requires km+ kn flops.

• The factors E and F are often useful for data interpretation.

In practice, we often impose conditions on the factors. For instance, in the well known QR decomposition, the
columns of E are orthonormal, and F is upper triangular (up to permutations of the columns).

2.2. Approximate rank deficiency. The condition that A has precisely rank k is of high theoretical interest, but
is not realistic in practical computations. Frequently, the numbers we use have been measured by some device with
finite precision, or they may have been computed via a simulation with some approximation errors (e.g. by solving
a PDE numerically). In any case, we almost always work with data that is stored in some finite precision format
(typically about 10−15). For all these reasons, it is very useful to define the concept of approximate rank. In this
course, we will typically use the following definition:

Definition 2.1. Let A be an m× n matrix, and let ε be a positive real number. We then say define the ε-rank k of
A as the unique integer k such that both the following two conditions holds:

(a) There exists a matrix B of precise rank k such that ‖A− B‖ ≤ ε.
(b) There does not exist any matrix B of rank less than k such that (a) holds

The term ε-rank is sometimes used slightly loosely without enforcing condition (b). In other words, we sometimes
say that A has ε-rank k if

inf{‖A− B‖ : B has rank k},
without worrying about whether the rank could actually be smaller.

3. THE EIGENVALUE DECOMPOSITION

Let A be an n × n matrix (it must be square for eigenvalues and eigenvectors to exist). We then say that λ is an
eigenvalue and v is an eigenvector of A if v 6= 0 and

Av = λv.

Theorem 1. Let A be an n × n normal matrix (so that AA∗ = A∗A). Then there exist a unitary matrix V and a
diagonal matrix D such that

(1) A = VDV∗.
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The equation (1) can alternatively be written

A =

n∑
j=1

λj vj v
∗
j ,

where {λj , vj} are the eigenpairs of A, and

V =
[
v1 v2 · · · vp

]
,

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λp

 .
In other words, at the columns of V are the eigenvectors of A. These eigenvectors form an orthonormal basis for
Cn. In the basis {vj}nj=1, the matrix A is diagonal.

Recall that self-adjoint, skew-adjoint, and unitary matrices are special cases of normal matrices, so these classes
all allow spectral decompositions. It is easy to verify that:

A is self-adjoint ⇔ A∗ = A ⇔ Every eigenvalue is real.
A is skew-adjoint ⇔ A∗ = −A ⇔ Every eigenvalue is imaginary.
A is unitary ⇔ A∗ = A−1 ⇔ Every eigenvalue satisfies |λj | = 1.

Note that even a matrix whose entries are all real may have complex eigenvalues and eigenvectors.

What about non-normal matrices? Every square matrix has at least one (possibly complex) eigenvalue and one
eigenvector. But if A is not normal, then there is no orthonormal basis consisting of all eigenvectors. While eigen-
value decompositions of non-normal matrices are still very useful for certain applications, the lack of an ON-basis
consisting of eigenvectors makes the singular value decomposition a much better tool for low-rank approximation
in this case.
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