
CHAPTER 1

Matrix factorizations and low rank approximation

The first chapter provides a quick review of basic concepts from linear algebra that we will use frequently. Note that
the pace is fast here, and assumes that you have seen these concepts in prior course-work. If not, then additional
reading on the side is strongly recommended!

1.1. Notation, etc

1.1.1. Norms. Let x = [x1, x2, . . . , xn] denote a vector in Rn or Cn. Our default norm for vectors is the
Euclidean norm

‖x‖ =

 n∑
j=1

|xj |2
1/2

.

We will at times also use `p norms

‖x‖p =

 n∑
j=1

|xj |p
1/p

.

Let A denote an m×n matrix. For the most part, we allow A to have complex entries. We define the spectral norm
of A via

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
x6=0

‖Ax‖
‖x‖

.

We define the Frobenius norm of A via

‖A‖F =

 m∑
i=1

n∑
j=1

|A(i, j)|2
1/2

.

Observe that
‖A‖ ≤ ‖A‖F ≤

√
min(m,n) ‖A‖.

1.1.2. Transpose and adjoint. Given an m×n matrix A, the transpose At is the n×m matrix B with entries

B(i, j) = A(j, i).

The transpose is most commonly used for real matrices. It can also be used for a complex matrix, but more typically,
we then use the adjoint, which is the complex conjugate of the transpose

A∗ = At.

1.1.3. Subspaces. Let A be an m× n matrix.

• The row space of A is denoted row(A) and is defined as the subspace of Rn spanned by the rows of A.
• The column space of A is denoted col(A) and is defined as the subspace of Rm spanned by the columns

of A. The column space is the same as the range or A, so col(A) = ran(A).
• The nullspace or kernel of A is the subspace ker(A) = null(A) = {x ∈ Rn : Ax = 0}.



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

1.1.4. Special classes of matrices. We use the following terminology to classify matrices:

• An m× n matrix A is orthonormal if its columns form an orthonormal basis, i.e. A∗A = I.
• An n× n matrix A is normal if AA∗ = A∗A.
• An n× n real matrix A is symmetric if At = A.
• An n× n matrix A is self-adjoint if A∗ = A.
• An n× n matrix A is skew-adjoint if A∗ = −A.
• An n× n matrix A is unitary if it is invertible and A∗ = A−1.

1.2. Low rank approximation

1.2.1. Exact rank deficiency. Let A be an m× n matrix. Let k denote an integer between 1 and min(m,n).
Then the following conditions are equivalent:

• The columns of A span a subspace of Rm of dimension k.
• The rows of A span a subspace of Rn of dimension k.
• The nullspace of A has dimension n− k.
• The nullspace of A∗ has dimension m− k.

If A satisfies any of these criteria, then we say that A has rank k. When A has rank k, it is possible to find matrices
E and F such that

A = E F.
m× n m× k k × n

The columns of E span the column space of A, and the rows of F span the row space of A. Having access to such
factors E and F can be very helpful:

• Storing A requires mn words of storage.
Storing E and F requires km+ kn words of storage.

• Given a vector x, computing Ax requires mn flops.
Given a vector x, computing Ax = E(Fx) requires km+ kn flops.

• The factors E and F are often useful for data interpretation.

In practice, we often impose conditions on the factors. For instance, in the well known QR decomposition, the
columns of E are orthonormal, and F is upper triangular (up to permutations of the columns).

1.2.2. Approximate rank deficiency. The condition that A has precisely rank k is of high theoretical interest,
but is not realistic in practical computations. Frequently, the numbers we use have been measured by some device
with finite precision, or they may have been computed via a simulation with some approximation errors (e.g. by
solving a PDE numerically). In any case, we almost always work with data that is stored in some finite precision
format (typically about 10−15). For all these reasons, it is very useful to define the concept of approximate rank. In
this course, we will typically use the following definition:

DEFINITION 1. Let A be an m × n matrix, and let ε be a positive real number. We then define the ε-rank of A as
the unique integer k such that both the following two conditions hold:

(a) There exists a matrix B of precise rank k such that ‖A− B‖ ≤ ε.
(b) There does not exist any matrix B of rank less than k such that (a) holds

The term ε-rank is sometimes used without enforcing condition (b): We sometimes say that A has ε-rank k if

inf{‖A− B‖ : B has rank k} ≤ ε,

without worrying about whether the rank could actually be smaller. In other words, we sometimes say “A has
ε-rank k” when we really mean “A has ε-rank at most k.”

2



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

1.3. The eigenvalue decomposition

Let A be an n × n matrix (it must be square for eigenvalues and eigenvectors to exist). We then say that λ is an
eigenvalue and v is an eigenvector of A if v 6= 0 and

Av = λv.

THEOREM 1. Let A be an n × n matrix. Then A is normal (meaning that AA∗ = A∗A) if and only if A admits a
factorization of the form

(1.1) A = VDV∗

where V is unitary and D is diagonal.

The equation (1.1) can alternatively be written

A =

n∑
j=1

λj vj v∗j ,

where {λj , vj} are the eigenpairs of A, and

V =
[
v1 v2 · · · vn

]
,

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

 .
In other words, the columns of V are the eigenvectors of A. These eigenvectors form an orthonormal basis for Cn.
In the basis {vj}nj=1, the matrix A is diagonal.

Recall that self-adjoint, skew-adjoint, and unitary matrices are special cases of normal matrices, so these classes
all allow spectral decompositions. It is easy to verify that:

A is self-adjoint ⇔ A∗ = A ⇔ Every eigenvalue is real.
A is skew-adjoint ⇔ A∗ = −A ⇔ Every eigenvalue is imaginary.
A is unitary ⇔ A∗ = A−1 ⇔ Every eigenvalue satisfies |λj | = 1.

Note that even a matrix whose entries are all real may have complex eigenvalues and eigenvectors.

What about non-normal matrices? Every square matrix has at least one (possibly complex) eigenvalue and one
eigenvector. But if A is not normal, then there is no orthonormal basis consisting of eigenvectors. While eigen-
value decompositions of non-normal matrices are still very useful for certain applications, the lack of an ON-basis
consisting of eigenvectors typically makes the singular value decomposition a much better tool for low-rank ap-
proximation in this case.

1.4. The Singular Value Decomposition

1.4.1. Definition of full SVD. Let A be an m × n matrix (any matrix, it can be rectangular, complex or real
valued, etc). Set p = min(m,n). Then A admits a factorization

(1.2)
A = U D V∗,

m× n m× p p× p p× n
3



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

where U and V are orthonormal, and where D is diagonal. We write these out as

U =
[
u1 u2 · · · up

]
,

V =
[
v1 v2 · · · vp

]
,

D =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

0 0 · · · σp

 .
The vectors {uj}pj=1 are the left singular vectors and the vectors {vj}pj=1 are the right singular vectors. These
form orthonormal bases of the ranges of A and A∗, respectively. The values {σj}pj=1 are the singular values of A.
These are customarily ordered so that

σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σp ≥ 0.

The SVD (1.2) can alternatively be written as a decomposition of A as a sum of p “outer products” of vectors

A =

p∑
j=1

σj uj v∗j .

1.4.2. Low rank approximation via SVD. For purposes of approximating a given matrix by a matrix of low
rank, the SVD is in a certain sense optimal. To be precise, suppose that we are given a matrix A, and have computed
its SVD (1.2). Then for an integer k ∈ {1, 2, . . . , p}, we define

Ak =

k∑
j=1

σj uj v∗j .

Clearly Ak is a matrix of rank k. It is in fact the particular rank-k matrix that best approximates A:

‖A− Ak‖ = inf{‖A− B‖ : B has rank k},
‖A− Ak‖F = inf{‖A− B‖F : B has rank k}.

If k < p, then it is easily verified that the minimal residuals evaluate to

‖A− Ak‖ = σk+1,

‖A− Ak‖F =

 p∑
j=k+1

σ2j

1/2

.

REMARK 1.1. For normal matrices, a truncated eigenvalue decomposition attains exactly the same approximation
error as a truncated SVD, so for this particular class of matrices, either decomposition can be used. (But note that
the ED could be complex even for a real matrix.)

1.4.3. Connection between the SVD and the eigenvalue decomposition. Let A be an m × n matrix. Then
form the m×m matrix

B = AA∗.

Observe that B is self-adjoint, so there exist m orthonormal eigenvector {uj}mj=1 with associated real eigenvalues
{λj}mj=1. Then {uj}mj=1 are left singular vectors of A associated with singular values σj =

√
λj . Analogously, if

we form the n× n matrix
C = A∗A,

then the eigenvectors of C are right singular vectors of A.

4



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

1.4.4. Computing the SVD. One can prove that in general computing the singular values (or eigenvalues) of
an n× n matrix exactly is an equivalent problem to solving an n’th order polynomial (the characteristic equation).
Since this problem is known to not, in general, have an algebraic solution for n ≥ 5, it is not surprising that
algorithms for computing singular values are iterative in nature. However, they typically converge very fast, so for
practical purposes, algorithms for computing a full SVD perform quite similarly to algorithms for computing full
QR decompositions. For details, we refer to standard textbooks [6, 13], but some facts about these algorithms are
relevant to what follows:

• Standard algorithms for computing the SVD of a densem×nmatrix (as found in Matlab, LAPACK, etc),
have practical asymptotic speed of O(mn min(m,n)).
• While the asymptotic complexity of algorithms for computing full factorizations tend to beO(mn min(m,n))

regardless of the choice of factorization (LU, QR, SVD, etc), the scaling constants are different. In par-
ticular pivoted QR is slower than non-pivoted QR, and the SVD is even slower.
• Standard library functions for computing the SVD almost always produce results that are accurate to full

double precision accuracy. They can fail to converge for certain matrices, but in high-quality software,
this happens very rarely.
• Standard algorithms are challenging to parallelize well. For a small number of cores on a modern CPU

(as of 2016) they work well, but performance deteriorates as the number of cores increase, or if the
computation is to be carried out on a GPU or a distributed memory machine.

1.5. The QR factorization

Let A be an m× n matrix. Set p = min(m,n). Let {aj}nj=1 denote the columns of A,

A =
[
a1 a2 · · · an

]
.

Our objective is now to find an orthonormal set of vectors {qj}
p
j=1 that form a “good” set of basis vectors for

expressing the columns of A. In other words, if we set

Qk =
[
q1 q2 · · · qk

]
,

then we want

‖A−QkQ∗kA‖ ≈ inf{‖A− B‖ : B has rank k} = σk+1.

We recall that the optimal basis (in this sense) is the left singular vectors of A. However, these are tricky to compute,
and we seek a simpler and faster algorithm that leads to close to optimal basis vectors.

1.5.1. The Gram-Schmidt process. The Gram-Schmidt process is a simple “greedy” algorithm that can be
coded efficiently. (Or at least reasonably efficiently, see Section 1.5.5.) Informally speaking, the idea is to take
the collection of vectors {aj}nj=1, grab the largest one, normalize it to make its length one, and then use the
resulting vector as the first basis vector. Then project the remaining n− 1 vectors away from the one that was first
chosen. Then take the largest vector of the remaining ones, normalize it to form the second basis vector, project the
remaining n− 2 vectors away from the new basis vector, etc. The resulting algorithm is shown in Figure 1.1.

REMARK 1.2 (Break-down for rank-deficient matrices). The process shown in Figure 1.1 will break down if the
matrix has exact rank that is less than min(m,n). In this case, the residual matrix A will at some point be exactly
zero. For purposes of formulating a mathematically correct algorithm, all one needs to do is to introduce a stopping
criterion that breaks the loop if this happens. In practice, since all computations are carried out in finite precision,
the residual is very unlikely to ever be exactly zero. However, when the residual gets small, round-off errors will
create serious loss of accuracy. Techniques that overcome this problem are described in Section 1.5.2.

5



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

(1) Q0 = [ ]; R0 = [ ]; A0 = A; p = min(m,n);
(2) for j = 1 : p

(3) ij = argmin{‖A(:, `)‖ : ` = 1, 2, . . . , n}
(4) q = A(:, i)/‖A(:, i)‖.
(5) r = q∗Aj−1

(6) Qj = [Qj−1 q]

(7) Rj =

[
Rj−1

r

]
(8) Aj = Aj−1 − qr

(9) end for
(10) Q = Qp; R = Rp;

FIGURE 1.1. The basic Gram Schmidt process. Given an input matrix A, the algorithm computes
an ON matrix Q and a “morally” upper triangular matrix R such that A = QR. At the intermediate
steps, we have A = Aj + QjRj . Moreover at any step k, the columns of Q(:, 1 : k) form an ON
basis for the space spanned by the pivot vectors A(:, [i1, i2, . . . , ik]).

1.5.2. The QR factorization. Starting with the simplistic process described in Section (1.5.1), we will make
two sets of improvements:

(1) Improving numerical accuracy: The method described in Figure 1.1 works perfectly when executed in ex-
act arithmetic. However, for large matrices, the basis vectors generated tend to lose orthonormality as the
computation proceeds. To avoid this, we perform an additional re-orthonormalization step. Specifically,
after line (4), one should insert two new lines:

(4’) q = q−Qj−1 (Q∗j−1q).
(4”) q = q/‖q‖.

These additional steps would make no difference in exact arithmetic, but they are important in practical
computations. Without them, you often lose orthonormality in the basis vectors, which greatly degrades
the utility of the computed factorization.

(2) Better pivoting: In practice, it is convenient to explicitly swap out the pivot vector you choose at step k
to the k’th column in the matrix Q that you build. One must also do the analogous swap in the R matrix
being built. (Moreover, it is possible to improve computational speed by accelerating the pivot selection
step on line (3). The idea is to maintain a vector of length 1 × n that holds the sum of the squares of
all remaining residuals. This vector can be cheaply downdated at the end of the loop, which saves us the
need to compute the norms of the columns of Q. See [6, Sec. 5.4.1].)

(3) Improved book-keeping: The algorithm as written is wasteful of memory. One reasonably storage efficient
way of implementing the method is to define at the outset a new matrix Q of sizem×n and simply copying
A over to Q. This matrix Q is used to hold both the new basis vectors that are stored in Qk in Figure 1.1
and the residual columns that are stored in Ak in Figure 1.1. Observe that in each step, we zero out one
residual vector, and create one new basis vector, so there is a perfect match. To be precise, at the end of
the k’th step, the matrix Q holds Q =

[
Qk Ãk

]
, where Qk holds the computed k columns of Q, and Ãk

holds the remaining n− k residual vectors.

The algorithm resulting from incorporating these improvements is given in Figure 1.2.

REMARK 1.3 (Householder QR). The QR factorization algorithm described in Figure 1.2 can be optimized further.
In professional software packages, standard practice is to form the matrix Q as a product of so called Householder
reflectors. These provide optimal stability and maintain very high orthonormality among the columns of Q. Further,
when Householder reflectors are used, all the information needed to form R and Q can be stored in a single array
of size m×n, as opposed to the formulation we give where two copies of the array are used. The trick is to use the

6



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

Create and initialize the output matrices.
(1) Q = A; R = zeros(min(m,n), n); J = 1 : n;
(2) for j = 1 : min(m,n)

Find the pivot column i.
(3) i = argmin{‖Q(:, `)‖ : ` = j, j + 1, j + 2, . . . , n}

Move the chosen pivot column to the j’th slot.
(4) J([j, i]) = J([i, j]); Q(:, [j, i]) = Q(:, [i, j]); R(:, [j, i]) = R(:, [i, j]);
(5) ρ = ‖Q(:, j)‖
(6) R(j, j) = ρ

Perform the “paranoid” reorthonormalization.
(7) q = (1/ρ) Q(:, j)

(8) q = q−Q(:, 1 : (j − 1)) (Q(:, 1 : (j − 1))∗ q)

(9) q = (1/‖q‖) q

(10) Q(:, j) = q

Compute the expansion coefficients and update Q and R.
(11) r = q∗Q(:, (j + 1) : n)

(12) R(j, (j + 1) : n) = r

(13) Q(:, (j + 1) : n) = Q(:, (j + 1) : n)− qr

(14) end for
If n > m, then we need to delete the last columns of Q.

(15) Q = Q(:, 1 : min(m,n))

FIGURE 1.2. QR factorization via Gram Schmidt. The algorithm takes as input an m× n matrix
A. The output is, with p = min(m,n), an index vector J , an m × p ON matrix Q, and a p × n
upper triangular matrix R such that A(:, J) = QR.

zero elements formed “under the diagonal” in R to store enough information to uniquely define Q. See [6, Sec. 5.4]
or [13, Lecture 10].

1.5.3. Low rank approximation via the QR factorization. The algorithm for computing the QR factoriza-
tion can trivially be modified to compute a low rank approximation to a matrix. Consider the algorithm given in
Figure 1.2. After k steps of the algorithm, we find that the matrices Q and R hold the following entries:

R =

[
Rk

0

]
and Q =

[
Qk Ãk

]
.

The matrix Rk is the matrix of size k×n holding the top k rows of R, the matrix Qk is of size m× k and holds the
first k columns of Q, and the matrix Ãk is of size m× (n− k) and holds the “remainder” of the columns that have
not yet been chosen as pivot columns (in other words, it contains the non-zero columns of the matrix Ak in Figure
1.1). Then the partial factorization we have computed after k steps reads

(1.3) A(:, J) = QkRk +
[
0 Ãk

]
.

Let Pk denote the permutation matrix defined by the index vector J so that

A(:, J) = APk.

Then we can rewrite (1.3) as (note that P−1k = P∗k)

A = QkRkP∗k +
[
0 Ãk

]
P∗k.

The first term has rank k and the second term is the “remainder.”

7



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

Create and initialize the output matrices.
(*) Q = A; R = zeros(min(m,n), n); J = 1 : n;
(*) for j = 1 : min(m,n)

Find the pivot column i.
(*) i = argmin{‖Q(:, `)‖ : ` = j, j + 1, j + 2, . . . , n}
(*) J([j, i]) = J([i, j]); Q(:, [j, i]) = Q(:, [i, j]); R(:, [j, i]) = R(:, [i, j]);

Move the chosen pivot column to the j’th slot.
(*) ρ = ‖Q(:, j)‖
(*) R(j, j) = ρ

Perform the “paranoid” reorthonormalization.
(*) q = (1/ρ) Q(:, j)

(*) q = q−Q(:, 1 : (j − 1)) (Q(:, 1 : (j − 1))∗ q)

(*) q = (1/‖q‖) q

(*) Q(:, j) = q

Compute the expansion coefficients and update Q and R.
(*) r = q∗Q(:, (j + 1) : n)

(*) R(j, (j + 1) : n) = r

(*) Q(:, (j + 1) : n) = Q(:, (j + 1) : n)− qr

Check the accuracy of the partial factorization.
if sum(sum(Q(:, (j + 1) : n). ∗Q(:, (j + 1) : n))) ≤ ε2 then break

(*) end for
(*) k = j; Q = Q(:, 1 : k); R = R(1 : k, :);

FIGURE 1.3. Partial QR factorization via Gram Schmidt. The algorithm takes as input an m× n
matrix A and a tolerance ε. The output is, an index vector J , an m× k ON matrix Q, and a k × n
upper triangular matrix R such that ‖A(:, J) − QR‖F ≤ ε. The integer k is the computed rank,
and is an output parameter. (Observe that the computation of the Frobenius norm of the remainder
matrix, and the determination of the pivot vectors can be optimized.)

Suppose that we are interested in computing a low rank factorization of A that is accurate to some precision ε,
using the Frobenius norm. Then after the k’th step, we can simply evaluate ‖Ãk‖F and stop when this quantity
drops below ε. The resulting algorithm is given in Figure 1.3.

1.5.4. Getting the SVD from the QR factorization. The technique described in Section 1.5.3 results in a
factorization of the form

(1.4)
A ≈ Q RP∗ + E

m× n m× k k × n m× n
where Q is orthonormal, R is upper triangular, and the “error” or “remainder” matrix E satisfies

‖E‖F ≤ ε.
(We dropped the subscripts k here.) Suppose now that we seek a partial SVD. It turns out that this can be accom-
plished through two simple steps:

(1) Compute a full SVD of the matrix RP∗, which is cheap since R is small (it has only k rows)

RP∗ = Û D V∗.

(2) Multiply Q and Û together
U = QÛ.

8



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

Observe that now U and V are both orthonormal, D is diagonal, and

(1.5) A = Q RP∗︸︷︷︸
=ÛDV∗

+E = QÛ︸︷︷︸
=U

DV∗ + E = UDV∗ + E.

We have obtained a partial SVD. Observe in particular that the error term E is exactly the same in both (1.4) and
(1.5).

1.5.5. Blocking of algorithms and execution speed. The various QR factorization algorithms described in
this section are extremely powerful and useful. They have been developed over decades, and current implemen-
tations are highly accurate, entirely robust, and fairly fast. They suffer from one serious short coming, however,
which is that they inherently are formed as a sequence of n low-rank updates to a matrix. The reason this is bad
is that on modern computers, the cost of moving data (from RAM to cache, between levels of cache, etc) often
exceeds the time to execute flops. As an illustration of this phenomenon, suppose that we are given an m × n
matrix A and a set of vectors {xi}pi=1, and that we seek to evaluate the vectors

yi = A xi, i = 1, 2, . . . , p.

One could either do this via a simple loop:

for i = 1 : p

yi = Axi

end for

Or, one could put all the vectors in a matrix and simply evaluate a matrix-matrix product:[
y1 y2 · · · yp

]
= A

[
x1 x2 · · · xp

]
.

The two options are mathematically equivalent, and they both require precisely mnp flops. But, executing the
computation as a matrix-matrix multiplication is much faster. To simplify slightly, the reason is that when you
execute the loop, the matrix A has to be read from memory p times. (Real life is more complicated since the
compiler might be smart and optimize the loop, etc.) In general, any linear algebraic operation that can be coded
using matrix-matrix operations tends to be much faster than a corresponding operation coded as a sequence of
matrix-vector operators. Technically, we sometimes refer to “BLAS3” operations (matrix-matrix) versus “BLAS2”
operations (martix-vector) [3, 1].

The problem with the column pivoted QR factorization is that it inherently consists of a sequence of BLAS2
operations. This makes it hard to get good performance on multicore CPUs and GPUs (and in fact, even on
singlecore CPUs, due to the multiple levels of cache on modern processors). This leaves us in an uncomfortable
spot when it comes to low rank approximation. To explain, suppose that A is an n× n matrix, and let us consider
three different matrix factorization algorithms:

(1) QR factorization without pivoting (“QR”).
(2) QR factorization with column pivoting (“CPQR”).
(3) Singular value decomposition (“SVD”).

All three algorithms have asymptotic complexity of O(n3), meaning that there are constants such that

TQR ∼ CQR n
3, TCPQR ∼ CCPQR n

3, TSVD ∼ CSVD n
3.

On most computer architectures we have CQR < CCPQR < CSVD, and the differences typically are not small.
(See Exercise ??). Comparing these three algorithms, we find that:

Algorithm: QR CPQR SVD
Speed: Fast. Slow. Slowest.
Ease of parallelization: Fairly easy. Very hard. Very hard.
Useful for low-rank approximation: No. Yes. Excellent.
Partial factorization possible? Yes, but not useful. Yes. Not easily.

9



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

What we would want is an algorithm for low rank approximation that can be blocked so that it can be implemented
using BLAS3 operations rather than BLAS2 operations. It turns out that randomized sampling provides an excellent
path for this, as we will see in Section 2.

1.6. Subspaces associated with low rank approximation

This section briefly describes the geometric interpretation of low-rank approximation. Throughout the section,
suppose that A is an m× n matrix of rank k. (Typically, this would be an approximate rank, but for simplicity, let
us ignore the error for now.) Our starting point here is that we have computed rank k factorizations, either a QR
factorization

(1.6)
A = Q R P∗

m× n m× k k × n n× n

or an SVD

(1.7)
A = U D V∗.

m× n m× k k × k k × n

Set X = Rn and Y = Rm so that

A : X → Y.

Now observe that

(1.8) X = X1 ⊕X2, and Y = Y1 ⊕ Y2,

where

• X1 = row(A) is a subspace of rank k.
• X2 = null(A) is a subspace of rank n− k.
• Y1 = col(A) is a subspace of rank k.
• Y2 = col(A)⊥ is a subspace of rank m− k.

The decomposition (1.8) clarifies the action of A. Given a vector x ∈ Rn, we write

x = x1︸︷︷︸
∈X1

+ x2︸︷︷︸
∈X2

.

Then Ax2 = 0. Moreover, Ax = Ax1 ∈ Y1, so in reality, A maps X1 to Y1.

REMARK 1.4. ... full SVD ...

1.6.1. The column space. This is easy, the columns of Q and U directly form ON-bases for col(A). The two
bases are typically different.

1.6.2. The row space. If you have the SVD (1.7), then the columns of V form an ON-basis for row(A). If
you have the QR factorization (1.7), then the rows of R in principle form an ON-basis for the row space of A, but
it is not orthonormal. Observe however that since k is small, it is easy to obtain an ON-basis by simply performing
Gram-Schmidt on the rows of R (pivoting is typically not required). For instance, if we execute[

S,∼
]

= qr(R∗, 0)

then the columns of S form an ON basis for row(A).

10



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

1.6.3. The nullspace of a matrix. The partial factorizations we computed do not directly provide a basis for
the nullspace of a matrix. If the matrix is small, then you could compute the full factorizations, and get the bases
that way. For big matrices, this tends to not be feasible, though. However, observe that the information provided is
enough to characterize the null-space. Suppose that we have access to an n× k matrix V holding an ON basis for
the row space of A (e.g. the matrix of right singular vectors). Observe that we can then split the identity operator as

I = VV∗ +
(
I− VV∗

)
.

The first term is the orthogonal projection onto row(A), and the second term is the orthogonal projection onto
row(A)⊥ = null(A). In other words, given a vector x ∈ Rn, we can write

x = VV∗x︸ ︷︷ ︸
∈row(A)

+
(
I− VV∗

)
x︸ ︷︷ ︸

∈null(A)

.

1.6.4. Solving a (least squares) linear system.

11





CHAPTER 2

Randomized methods for low rank approximation

2.1. Introduction

2.2. A two-stage approach

The problem of computing an approximate low-rank factorization to a given matrix can conveniently be split into
two distinct stages. For concreteness, we describe the split for the specific task of computing an approximate
singular value decomposition. To be precise, given an m × n matrix A and a target rank k, we seek to compute
factors U, D, and V such that

A ≈ U D V∗.
m× n m× k k × k k × n

The factors U and V should be orthonormal, and D should be diagonal. (For now, we assume that the rank k is
known in advance, techniques for relaxing the assumption are described in Section 2.9.) Following [8], we split
this task into two computational stages:

Stage A — find an approximate range: Construct anm×k matrix Q with orthonormal columns such that
A ≈ QQ∗A. This step will be executed via a randomized process described in Section 2.3.

Stage B — form a specific factorization: Given the matrix Q computed in Stage A, form factors U, D, and
V, via classical deterministic techniques. For instance, this stage can be executed via the following steps:
(1) Form the k × n matrix B = Q∗A.
(2) Decompose the matrix B in a singular value decomposition B = ÛDV∗.
(3) Form U = QÛ.

The point here is that in a situation where k � min(m,n), the difficult part of the computation is concentrated to
Stage A. Once that is finished, the post-processing in Stage B is easy.

REMARK 2.1. Stage B is exact up to floating point arithmetic so all errors in the factorization process are incurred
at Stage A. In other words, if the factor Q satisfies

||A−QQ∗A|| ≤ ε,
then the full factorization satisfies

(2.1) ||A−UDV∗|| ≤ ε
unless ε is close to the machine precision. Note that (2.1) does not in general guarantee that the computed singular
vectors in the matrices U and V are within distance ε of the exact leading k singular vectors. In many (but not all)
contexts, this is not a problem since only the error in the product UDV∗ matters. (The computed singular values
in D are within distance ε of the exact singular values, but note that for small singular values the relative precision
may be poor.)

2.3. A randomized algorithm for “Stage A” — the range finding problem

This section describes a randomized technique for solving the range finding problem introduced as “Stage A” in
Section 2.2. As a preparation for this discussion, let us recall that an “ideal” basis matrix Q for the range of a given
matrix A is the matrix Uk formed by the k leading left singular vectors of A. Letting σj(A) denote the j’th singular
value of B, the Eckard-Young theorem [12] states that

inf{||A− C|| : C has rank k} = ||A−UkV∗kA|| = σk+1(A).



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

ALGORITHM: BASIC RANDOMIZED SVD

Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 10).

Outputs: Matrices U, D, and V in an approximate rank-(k + p) SVD of A. (I.e. U and V are orthonormal
and D is diagonal.)

Stage A:
(1) Form an n× (k + p) Gaussian random matrix G.
(2) Form the sample matrix Y = A G.
(3) Orthonormalize the columns of the sample matrix Q = orth(Y).

Stage B:
(4) Form the (k + p)× n matrix B = Q∗A.
(5) Decompose the matrix B in a singular value decomposition [Û, D, V] = svd(B).
(6) Form U = QÛ.

FIGURE 2.1. A basic randomized algorithm. If a factorization of precisely rank k is desired, the
factorization in Step 5 can be truncated to the k leading terms.

Now consider a simplistic randomized method for constructing a spanning set with k vectors for the range of a
matrix A: Draw k random vectors {gj}kj=1 from a Gaussian distribution, map these to vectors yj = Agj in the
range of A, and then use the resulting set {yj}kj=1 as a basis. Upon orthonormalization via, e.g., Gram-Schmidt, an
orthonormal basis {qj}kj=1 would be obtained. If the matrix A has exact rank k, then the vectors {Agj}kj=1 would
with probability 1 be linearly independent, and the resulting ON-basis {qj}kj=1 would exactly span the range of A.
This would in a sense be an ideal algorithm. The problem is that in practice, there are almost always many non-zero
singular values beyond the first k ones. These modes will shift the sample vectors Agj out of the space spanned
by the k leading singular vectors of A and the process described can (and frequently does) produce a poor basis.
Luckily, there is a fix: Simple take a few extra samples. It turns out that if we take, say, k + 10 samples instead of
k, then the process will with probability almost 1 produce a basis that is comparable to the best possible basis.

To summarize the discussion in the previous paragraph, the randomized sampling algorithm for constructing an
approximate rank k basis for the range of a given m × n matrix A proceeds as follows: First pick a small integer
p representing how much “over-sampling” we do. (The choice p = 10 is often good.) Then execute the following
steps:

(1) Form a set of k + p random Gaussian vectors {gj}
k+p
j=1 .

(2) Form a set {yj}
k+p
j=1 of samples from the range where yj = Agj .

(3) Perform Gram-Schmidt on the set {yj}
k+p
j=1 to form the ON-set {qj}

k+p
j=1 .

Now observe that the k+pmatrix-vector products are independent and can advantageously be executed in parallel.
A full algorithm for computing an approximate SVD using this simplistic sampling technique for executing “Stage
A” is summarized in Figure 2.1.

The error incurred by the randomized range finding method described in this section is a random variable. There
exist rigorous bounds for both the expectation of this error, and for the likelihood of a large deviation from the
expectation. These bounds demonstrate that when the singular values of A decay “reasonably fast,” the error
incurred is close to the theoretically optimal one. We provide more details in Section 2.6.

2.4. Single pass algorithms

The randomized algorithm described in Figure 2.1 accesses the matrix A twice, first in “Stage A” where we build an
ON-basis for the column space, and then in “Stage B” where we project A on to the space spanned by the computed
basis vectors. It turns out to be possible to modify the algorithm in such a way that each entry of A is accessed only

14



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

once. This is important because it allows us to compute the factorization of a matrix that is too large to be stored
even out-of-core.

For Hermitian matrices, the modification to Algorithm 2.1 is very minor and we describe it in Section 2.4.1. Section
2.4.2 then handles the case of a general matrix.

REMARK 2.2 (Loss of accuracy). The single-pass algorithms described in this section tend to produce a factoriza-
tion of lower accuracy than what Algorithm 2.1 would yield. In situations where a two-pass algorithm is feasible,
it is therefore often preferable to the single-pass algorithm.

REMARK 2.3 (Streaming Algorithms). We say that an algorithm for processing a matrix is a streaming algorithm
if each entry of the matrix is accessed only once, and if, in addition, it can be fed the entries in any order. (In
other words, the algorithm is not allowed to dictate the order in which the elements are viewed.) The algorithms
described in this section satisfy both of these conditions.

2.4.1. Hermitian matrices. Suppose that A = A∗, and that our objective is to compute an approximate
eigenvalue decomposition

(2.2)
A ≈ U DU∗

n× n n× k k × k k × n
with U an ON matrix and D diagonal. (Note that for a Hermitian matrix, the EVD and the SVD are essentially
equivalent, and that the EVD is the more natural factorization.) Then execute Stage A with an over-sampling
parameter p to compute an ON matrix Q whose columns form an approximate basis for the column space of A:

(1) Draw a Gaussian random matrix G of size n× (k + p).
(2) Form the sampling matrix Y = AG.
(3) Orthonormalize the columns of Y to form Q, in other words Q = orth(Y).

Then

(2.3) A ≈ QQ∗A.

Observe that since in this case the column space and the row space are equivalent, we also have

(2.4) A ≈ AQQ∗.

Combine (2.3) and (2.4) to obtain

(2.5) A ≈ QQ∗AQQ∗.

We define

(2.6) C = Q∗AQ.

If C is known, then the post-processing is straight-forward: Simply compute the EVD of C to obtain C = ÛDÛ
∗
,

then define U = QÛ, to find that
A ≈ QCQ∗ = QÛDÛ

∗
Q∗ = UDU∗.

The problem now is that since we are seeking a single-pass algorithm, we are not in position to evaluate C directly
from formula (2.6). Instead, we will derive a formula for C that can be evaluated without revisiting A. To this end,
multiply (2.6) by Q∗G to obtain

(2.7) C(Q∗G) = Q∗AQQ∗G ≈ {Use (2.4)} ≈ Q∗AG = Q∗Y

From (2.4), we know that AQQ∗ ≈ A so we can approximate right hand side in (2.7) via Q∗AQQ∗G ≈ Q∗AG =
Q∗Y. Ignoring the approximation error, we define C as the solution of the linear system (recall ` = k + p)

(2.8) C
(
Q∗G

)
=

(
Q∗Y

)
.

`× ` `× ` `× `
At first, it may appears that (2.8) is perfectly balanced in that there are `2 equations for `2 unknowns. However, we
need to enforce that C is Hermitian, so the system is actually over-determined by roughly a factor of two.

The procedure described in this section is less accurate than the procedure described in Figure 2.1 for two reasons:

15



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

ALGORITHM: SINGLE-PASS RANDOMIZED EVD FOR A HERMITIAN MATRIX

Inputs: An n× n Hermitian matrix A, a target rank k, and an over-sampling parameter p (say p = 10).

Outputs: Matrices U and D in an approximate rank-k EVD of A. (I.e. U is orthonormal and D is diagonal.)

Stage A:
(1) Form an n× (k + p) Gaussian random matrix G.
(2) Form the sample matrix Y = A G.
(3) Let Q denote the ON-matrix formed by the k dominant left singular vectors of Y.

Stage B:
(4) Let C denote the k × k least squares solution of C

(
Q∗G

)
=
(
Q∗Y

)
obtained by enforcing that C

should be Hermitian.
(5) Decompose the matrix C in an eigenvalue decomposition [Û, D] = eig(C).
(6) Form U = QÛ.

FIGURE 2.2. A basic randomized algorithm single-pass algorithm suitable for a Hermitian matrix.

(1) The approximation error in formula (2.5) tends to be larger than the error in (2.3). In fact, with ε =
‖A−QQ∗A‖, we have

‖A−QQ∗AQQ∗‖ = ‖A−QQ∗A‖+ ‖QQ∗A−QQ∗AQQ∗‖ =

ε+ ‖QQ∗(A− AQQ∗)‖ ≤ ε+ ‖A− AQQ∗‖ = 2ε,

where we used that ‖QQ∗‖ ≤ 1 (since Q is ON, and QQ∗ therefore is an ON projection) and that
‖A − AQQ∗‖ = ‖(A − AQQ∗)∗‖ = ‖QQ∗A − A‖. In other words, we could in a worst case scenario
double the error.

(2) While the matrix Q∗G is invertible, it tends to be very ill-conditioned.

REMARK 2.4 (Extra over-sampling). The combat the problem that Q∗G tends to be ill-conditioned, it is helpful to
over-sample more aggressively when using a single pass algorithm. Specifically, let us form Q as the leading k left
singular vectors of Y (compute these by forming the full SVD of Y, and then discard the last p components). Then
C will be of size k × k, and the equation that specifies C reads

(2.9) C
(
QG
)

= Q∗Y.
k × k k × ` k × `

Since (2.9) is over-determined, we solve it using a least-squares technique. Observe that we are now looking for
less information (a k × k matrix rather than an `× ` matrix), and have more information in order to determine it.

2.4.2. General matrices. Now consider a general m × n matrix A. We now need to apply randomized sam-
pling to both its row space and its column space simultaneously. We proceed as follows:

(1) Draw two Gaussian random matrices Gc of size n× (k + p) and Gr of size m× (k + p).
(2) Form two sampling matrices Yc = AGc and Yr = A∗Gr.
(3) Compute two basis matrices Qc = orth(Yc) and Qr = orth(Yr).

Now define the small projected matrix via

(2.10) C = Q∗cAQr.

We will derive two relationships that together will determine C is a manner that is analogous to (2.7). First left
multiply (2.10) by G∗rQc to obtain

(2.11) G∗rQcC = G∗rQcQ
∗
cAQr ≈ G∗rAQr = Y∗rQr.

Next we right multiply (2.10) by Q∗rGc to obtain

(2.12) CQ∗rGc = Q∗cAQrQ
∗
rGc ≈ Q∗cAGc = Q∗cYc.

16



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

ALGORITHM: SINGLE-PASS RANDOMIZED SVD FOR A GENERAL MATRIX

Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 10).

Outputs: Matrices U, V, and D in an approximate rank-k SVD of A. (I.e. U and V are ON and D is diagonal.)

Stage A:
(1) Form two Gaussian random matrices Gc = randn(n, k + p) and Gr = randn(m, k + p).
(2) Form the sample matrices Yc = A Gc and Yr = A∗Gr.
(3) Form ON matrices Qc and Qr consisting of the k dominant left singular vectors of Yc and Yr.

Stage B:
(4) Let C denote the k×k least squares solution of the joint system of equations formed by the equations(

G∗rQc

)
C = Y∗rQr and C

(
Q∗rGc

)
= Q∗cYc.

(5) Decompose the matrix C in a singular value decomposition [Û, D, V̂] = svd(C).
(6) Form U = QcÛ and V = QrV̂.

FIGURE 2.3. A basic randomized algorithm single-pass algorithm suitable for a general matrix.

We now define C as the least-square solution of the two equations(
G∗rQc

)
C = Y∗rQr and C

(
Q∗rGc

)
= Q∗cYc.

Again, the system is over-determined by about a factor of 2, and it is advantageous to make it further over-
determined by more aggressive over-sampling, cf. Remark 2.4.

2.5. A method with complexity O(mn log k) for dense matrices that fit in RAM

The RSVD algorithm described in Figure 2.1 for constructing an approximate basis for the range of a given matrix
A is highly efficient when we have access to fast algorithms for evaluating matrix-vector products x 7→ Ax. For the
case where A is a general m×n matrix given simply as an array or real numbers, the cost of evaluating the sample
matrix Y = AG (in Step (2) of the algorithm in Figure 2.1) is O(mnk). The algorithm is still often faster than
classical methods since the matrix-matrix multiply can be highly optimized, but it does not have an edge in terms
of asymptotic complexity. However, it turns out to be possible to modify the algorithm by replacing the Gaussian
random matrix G with a different random matrix Ω that has two seemingly contradictory properties:

(1) Ω is sufficiently structured that the product AΩ can be evaluated in O(mn log(k)) flops.
(2) Ω is sufficiently random that the columns of AΩ accurately span the range of A.

For instance, a good choice Ω is

(2.13)
Ω = D F S,

n× ` n× n n× n n× `
where D is a diagonal matrix whose diagonal entries are complex numbers of modulus one drawn from a uniform
distribution on the unit circle in the complex plane, where F is the discrete Fourier transform,

F(p, q) = n−1/2 e−2πi(p−1)(q−1)/n, p, q ∈ {1, 2, 3, . . . , n},

and where S is matrix consisting of a random subset of ` columns from the n × n unit matrix (drawn without
replacement). In other words, given an arbitrary matrix X of size m × n, the matrix XS consists of a randomly
drawn subset of ` columns of X. For the matrix Ω specified by (2.13), the product XΩ can be evaluated via a
subsampled FFT in O(mn log(`)) operations. The parameter ` should be chosen slightly larger than the target rank
k; the choice ` = 2k is often good.

By using the structured random matrix described in this section, we can reduce the complexity of “Stage A” in the
RSVD from O(mnk) to O(mn log k). We next need to modify “Stage B” to eliminate the need to compute Q∗A.
One option is to use the single pass algorithm described in 2.3, using the structured random matrix to approximate

17



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

both the row and the column spaces of A. A second, and typically better, option is to use a so called row-extraction
technique for Stage B, we describe the details in Section 4.4.

The current error analysis for the accelerated range finder is less satisfactory than the one for Gaussian random
matrices. In the general case, only very weak results can be proven. In practice, the accelerated scheme is often as
accurate as the Gaussian one, but we do not currently have good theory to predict precisely when this happens, see
[8, Sec. 11].

2.6. Theoretical performance bounds

In this section, we will briefly summarize some proven results concerning the error in the output of the basic RSVD
algorithm in Figure 2.1. Observe that the factors U, D, V depend not only on A, but also on the draw of the random
matrix G. This means that the error that we try to bound is a random variable. It is therefore natural to seek bounds
on first the “expectation” or “mean” of the error, and then on the likelihood of large deviations from the mean.

Before we start, let us recall that all the error incurred by the RSVD algorithm in Figure 2.1 is incurred in Stage A.
The reason is that the “post-processing” in Stage B is exact (up to floating point arithmetic):

A−Q Q∗A︸︷︷︸
=B

= A−Q B︸︷︷︸
=ÛDV∗

= A− QÛ︸︷︷︸
=U

DV∗ = A−UDV∗.

Consequently, we can (and will) restrict ourselves to providing bounds on ‖A−QQ∗A‖.

2.6.1. Bounds on the expectation of the error. For instance, Theorem 10.6 of [8] states:

THEOREM 2. Let A be an m × n matrix with singular values {σj}min(m,n)
j=1 . Let k be a target rank, and let p be

an over-sampling parameter such that p ≥ 2 and k + p ≤ min(m,n). Let G be a Gaussian random matrix of size
n× (k + p) and set Q = orth(AG). Then the average error, as measured in the Frobenius norm, satisfies

(2.14) E
[
‖A−QQ∗A‖Fro

]
≤
(

1 +
k

p− 1

)1/2
min(m,n)∑

j=k+1

σ2j

1/2

.

The corresponding result for the spectral norm reads

(2.15) R
[
‖A−QQ∗A‖

]
≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p

min(m,n)∑
j=k+1

σ2j

1/2

.

When errors are measured in the Frobenius norm, Theorem 2 is very gratifying. For our standard recommendation
of p = 10, we are basically within a factor of

√
k/10 of the theoretically minimal error. (Recall that the Eckart-

Young theorem states that
(∑min(m,n)

j=k+1 σ2j

)1/2
is a lower bound on the residual for any rank-k approximant.) If

you over-sample a little more aggressively and set p = k, then we are within a distance of
√

2 of the theoretically
minimal error.

When errors are measured in the spectral norm, the situation is much less rosy. The first term in the bound in (2.15)
is perfectly acceptable, but the second term is unfortunate in that it involves the minimal error in the Frobenius
norm, which can be a much bigger factor and potentially renders this bound highly sub-optimal. The theorem is
quite sharp, as it turns out, so this disparity reflects a true problem for the basic randomized scheme.

The extent to which the suboptimality in (2.15) is problematic depends on how rapidly the “tail” singular values
{σj}j>k decay. If they decay fast, then the spectral norm error and the Frobenius norm error are similar, and the
RSVD works well. If they decay slowly, then the RSVD performs OK when errors are measured in the Frobenius
norm, but not very well when the spectral norm is the one of interest. To illustrate the difference, let us consider
two situations:

18



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

Case 1 — fast decay: Suppose that the tail singular values decay exponentially fast, so that for some β ∈ (0, 1)

we have σj ≈ σk+1 β
j−k−1 for j > k. Then

(∑min(m,n)
j=k+1 σ2j

)1/2
≈ σk+1

(∑min(m,n)
j=k+1 β2

)1/2
≤ σk+1(1 −

β2)−1/2. As long as β is not very close to 1, we see that the contribution from the tail singular values is very
modest in this case.

Case 2 — no decay: Suppose that the tail singular values exhibit no decay, so that σj = σk+1 for j > k. This

represents the worst case scenario, and now
(∑min(m,n)

j=k+1 σ2j

)1/2
= σk+1

√
n− k. Since we want to allow for n

to be very large (say n = 106), this represents a huge degree of suboptimality.

Fortunately, it is possible to modify the RSVD in such a way that the errors produced are close to optimal in both
the spectral and the Frobenius norms. This is achieved by modestly increasing the computational cost. See Section
2.7 and [8, Sec. 4.5].

2.6.2. Bounds on the likelihood of large deviations. One can prove that (perhaps surprisingly) the likelihood
of a large deviation from the mean depends only on the over-sampling parameter p, and decays extra-ordinarily fast.
For instance, one can prove that if p ≥ 4, then

(2.16) ||A−QQ∗A|| ≤
(

1 + 17
√

1 + k/p
)
σk+1 +

8
√
k + p

p+ 1

(∑
j>k

σ2j

)1/2
,

with failure probability at most 3 e−p, see [8, Cor. 10.9].

2.7. An accuracy enhanced randomized scheme

2.7.1. The key idea — power iteration. We mentioned earlier that the basic randomized scheme (see, e.g.,
Figure 2.1) gives accurate results for matrices whose singular values decay rapidly, but tends to produce suboptimal
results when they do not. The theoretical results summarized in Section 2.6 make this claim precise. To recap,
suppose that we compute a rank-k approximation to an m × n matrix A with singular values {σj}j . The theory
shows that the error measured in the spectral norm behaves like

(∑
j>k σ

2
j

)1/2. When the singular values decay
slowly, this quantity can be much larger than the theoretically minimal approximation error (which is σk+1).

Recall that the objective of the randomized sampling is to construct a set of ON vectors {qj}`j=1 that capture to
high accuracy the space spanned by the k dominant left singular vectors {uj}kj=1 of A. The idea is now to sample
not A, but the matrix

A(q) :=
(
AA∗

)q
A,

where q is a small positive integer (typically, q = 1 or q = 2). A simple calculation shows that if A has singular
value decomposition A = UDV∗, then the SVD of A(q) is

A(q) = U D2q+1 V∗.

In other words, A(q) has the same left singular values as A, while its singular values are {σ2q+1
j }j . Even when the

singular values of A decay slowly, the singular values of A(q) tend to decay fast enough for our purposes.

The accuracy enhanced scheme now consists of drawing a Gaussian matrix G and then forming a sample matrix

Y =
(
AA∗

)q
AG.

Then orthonormalize the columns of Y to obtain Q = orth(Y), and proceed as before. The resulting scheme is
shown in Figure 2.4.

REMARK 2.5. The scheme described in Figure 2.4 can lose accuracy due to round-off errors. The problem is that
as q increases, all columns in the sample matrix Y =

(
AA∗

)q
AG tend to align closer and closer to the dominant

left singular vector. This means that we lose almost all accuracy in regards to the directions of singular values
associated with smaller singular vectors. Roughly speaking, if

σj
σ1
≤ ε1/(2q+1)

mach ,

19



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

ALGORITHM: ACCURACY ENHANCED RANDOMIZED SVD

Inputs: An m× n matrix A, a target rank k, an over-sampling parameter p (say p = 10), and a small integer
q denoting the number of steps in the power iteration.

Outputs: Matrices U, D, and V in an approximate rank-(k + p) SVD of A. (I.e. U and V are orthonormal
and D is diagonal.)

(1) G = randn(n, k + p);
(2) Y = AG;
(3) for j = 1 : q

(4) Z = A∗Y;

(5) Y = AZ;

(6) end for
(7) Q = orth(Y);
(8) B = Q∗A;

(9) [Û, D, V] = svd(B,’econ’);

(10) U = QÛ;

FIGURE 2.4. The accuracy enhanced randomized SVD. If a factorization of precisely rank k is
desired, the factorization in Step 5 can be truncated to the k leading terms.

then all information associated with the j’th singular more is lost. This issue is explored in more detail in Section
3.2. For now, let us simply state a variation of the scheme in Figure 2.4 that ameliorates the round-off error problem
by explicitly orthonormalizing the sample vectors between each iteration:

(1) G = randn(n, k + p);
(2) Q = orth(AG);
(3) for j = 1 : q

(4) W = orth(A∗Q);

(5) Q = orth(AW);

(6) end for
(7) B = Q∗A;

(8) [Û, D, V] = svd(B,’econ’);

(9) U = QÛ;

This scheme is more costly due to the calls to orth. However, this orthonormalization can be executed using
unpivoted Gram-Schmidt, which is quite fast.

2.7.2. Theoretical results. A detailed error analysis of the scheme described in Figure 2.4 is provided in [8,
Sec. 10.4]. In particular, the key theorem states the following:

THEOREM 3. Let A denote an m × n matrix, let p ≥ 2 be an over-sampling parameter, and let q denote a small
integer. Draw a Gaussian matrix G of size n× (k+ p), set Y = (AA∗)qAG, and let Q denote an m× (k+ p) ON
matrix resulting from orthonormalizing the columns of Y. Then

(2.17) E
[
‖A−QQ∗A‖

]
≤

[(
1 +

√
k

p− 1

)
σ2q+1
k+1 +

e
√
k + p

p

(∑
j>k

σ
2(2q+1)
j

)1/2]1/(2q+1)

.

The bound in (2.17) is slightly hard to read. To simplify it, let us consider the worst case scenario where there is
no decay in the singular values beyond the truncation point, so that σk+1 = σk+2 = · · · = σmin(m,n). Then (2.17)

20



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

simplifies to

E
[
‖A−QQ∗A‖

]
≤

[
1 +

√
k

p− 1
+
e
√
k + p

p
·
√

min{m,n} − k

]1/(2q+1)

σk+1.

In other words, as we increase the exponent q, the power scheme drives factor set in blue to one exponentially fast.
This factor represents the degree of “sub-optimality” you can expect to see.

2.7.3. Extended sampling matrix. The scheme described in Section 2.7.1 is slightly wasteful in that it does
not directly use all the sampling vectors computed. To further improve accuracy, let us form an “extended” sampling
matrix

Y =
[
AG, A2G, . . . , AqG

]
.

Observe that Y has q` columns. Then proceed as before:

Q = qr(Y), B = Q∗A, [Û,D,V] = svd(B,’econ’), U = QÛ.

Note that these computations are all much more expensive than those in Section 2.7.1 since we now work with ma-
trices with q` columns, as opposed to ` columns earlier. Since the cost of QR factorization, etc, grows quadratically
with the number of columns, the difference is very substantial — the cost of dense linear algebra increases by a
factor of O(q2). Consequently, the scheme described here is primarily useful in situations where the computational
cost is dominated by applications of A and A∗, and we want to maximally leverage all interactions with A.

2.8. The Nyström method for positive symmetric definite matrices

When the input matrix A is positive semidefinite, the Nyström method can be used to improve the quality of standard
factorizations at almost no additional cost; see [4] and its bibliography. To describe the idea, we first recall from
Section 2.4.1 that when A is Hermitian (which of course is a special case of psd), then it is natural to use the
approximation

(2.18) A ≈ Q
(
Q∗AQ

)
Q∗.

In contrast, the Nyström scheme builds a more sophisticated rank-k approximation, namely

(2.19) A ≈ (AQ)
(
Q∗AQ

)−1
(AQ)∗.

For both stability and computational efficiency, we typically rewrite (2.19) as

A ≈ FF∗,

where F is an approximate Cholesky factor of A of size n× k, defined by

F = (AQ)
(
Q∗AQ

)−1/2
.

To compute the factor F numerically, first form the matrices B1 = AQ and B2 = Q∗B1. Observe that B2 is
necessarily psd, which means that we can compute its Cholesky factorization B2 = C∗C. Finally compute the
factor F = B1C−1 by performing a triangular solve. The low-rank factorization (2.19) can be converted to a
standard decomposition using the techniques from Section 2.2.

The Nyström technique for computing an approximate eigenvalue decomposition is given in Figure 2.5. Let us
compare the cost of this method to the more straight-forward method resulting from using the formula (2.18). In
both cases, we need to twice apply A to a set of k+ p vectors (first in computing AG, then in computing AQ). But
the Nyström method tends to result in substantially more accurate results. Informally speaking, the reason is that
by exploiting the psd property of A, we can take one step of power iteration “for free.”

For a more formal analysis of the cost and accuracy of the Nyström method, we refer the reader to [4]. In particular,
Lemma 4 of [4] implies that, in the spectral norm, the Nyström approximation error never exceeds ‖A−QQ∗A‖,
and it is often substantially smaller.

21



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

ALGORITHM: EIGENVALUE DECOMPOSITION VIA NYSTRÖM METHOD

Given an n× n positive semidefinite matrix A, a target rank k and an over-sampling parameter p, this
procedure computes an approximate eigenvalue decomposition A ≈ UΛU∗, where U is orthonormal,
and Λ is nonnegative and diagonal.

(1) Draw a Gaussian random matrix G = randn(n, k + p).
(2) Form the sample matrix Y = AG.
(3) Orthonormalize the columns of the sample matrix to obtain the basis matrix Q = orth(Y).
(4) Form the matrices B1 = AQ and B2 = Q∗B1.
(5) Perform a Cholesky factorization B2 = C∗C.
(6) Form F = B1C−1 using a triangular solve.
(7) Compute an SVD of the Cholesky factor [U Σ,∼] = svd(F,’econ’).
(8) Set Λ = Σ2.

FIGURE 2.5. The Nyström method.

2.9. Adaptive rank determination

2.10. A blocked method that adaptively determines the rank

22



CHAPTER 3

Power iteration and Krylov methods

Consider a basic question: Suppose that we are given a matrix A and seek to compute approximations to the
dominant eigenvectors and the corresponding eigenvalues. The technique in Section 1.5.4 is one option that works
well for dense matrices whose singular values decay fairly rapidly. In this section, we briefly survey an alternative
set of techniques based on iterations and Krylov methods. These techniques have at least two persuasive advantages:

• They interact with the matrix only via the matrix-vector multiplication. This is particularly good for very
large sparse matrices.
• They are in certain environments more accurate than the methods described in Section 1.5.4.

For simplicity, we restrict attention to square matrices.

3.1. The basic power iteration

Let A be an n×n real symmetric matrix whose eigenvalues decay in magnitude. Suppose first that we seek simply
to compute an approximation to the dominante eigenvalue and its corresponding eigenvector. We suppose that A
has an eigenvalue decomposition

(3.1) A = VDV∗ =
n∑
j=1

λj vjv
∗
j ,

with the eigenvalues ordered by magnitude so that

(3.2) |λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λ1| ≥ 0.

Of course, the assumption is at this point that we do not know V and D, we use them simply for the analysis. Now
let us draw a random vector x as the start of the iteration. Since {vj}nj=1 forms an orthonormal basis for Rn, the
vector x has an expansion

(3.3) x =

n∑
j

cj vj ,

for some (unknown) coefficients {cj}nj=1. Using that for any positive integer p we have Apvj = λpjvj , we easily
find that

Apx =
n∑
j

cj λ
p
j vj .

We see that if the eigenvalues strictly decay, so that |λ1| > |λ2|, then the expansion coefficient of v1 will as p→∞
become more and more dominant (compared to the other terms), and the vector Apx will start to align better and
better with v1.

EXERCISE 1. Suppose that A is a real symmetric matrix with an eigenvalue decomposition (3.1) that satisfies (3.2).
Define a sequence of vectors via

x0 = randn(n, 1),(3.4)
xp = Axp−1 p = 1, 2, 3, . . . ,(3.5)

so that xp = Apx0.



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

(a) Assume that λ1 = 1, and that β = |λ2|/|λ1| < 1. Prove that the vector yp = 1
‖xp‖ xp converges to ±v1 as

p→∞.
(b) What is the speed of convergence of {yp}?
(c) Assume again that β = |λ2|/|λ1| < 1, but now drop the assumption that λ1 = 1. Prove that your answers

in (a) and (b) are still correct, with the exception that if λ1 is negative, then the yp will flip back and forth
between v1 and −v1.

(d) Show that ‖Ayp − λ1yp‖ → 0 as p→∞.

In solving this problem, you are allowed to use that when x0 is drawn from a Gaussian distribution (which is what
the Matlab command randn does) it has a series expansion x0 =

∑n
j=1 cj vj where c1 6= 0 with probability 1. (In

fact, one can prove that each cj is a random variable drawn from a normalized Gaussian distribution.)

3.2. Subspace iteration

The power iteration described in Section 3.1 is a very primitive algorithm. Its convergence rate is not that good
unless the ratio |λ2|/|λ1| is small. Moreover, it only computes a single eigenvector. Suppose now that we seek to
determine approximations to the top ` eigenvectors. A natural idea is then to run ` independent instantiations of the
single vector power iteration. We can express this is matrix form as:

X0 = randn(n, `),(3.6)
Xp = AXj−1 p = 1, 2, 3, . . . ,(3.7)

The end result is a matrix Xp whose ` columns approximately span the same space as the leading ` singular vectors.
By running Gram-Schmidt on these vectors, we expect to get a set of ` orthonormal vectors that should be “decent”
approximations to the ` dominant eigenvectors.

To improve numerical stability, it is best to orthornomalize in between each iteration:

(3.8)

X0 = randn(n, `)

for j = 1, 2, 3, . . .

Y = A Xj−1

Xj = qr(Y, 0)

end for

3.3. The general idea of Krylov methods

Suppose that A is an n×n Hermitian matrix, and let us consider the basic (single-vector) power iteration described
in Section 3.1. The idea is to take some starting vector g (using a Gaussian random vector is often a good choice),
and then construct a sequence by setting y1 = Ag, and yj+1 = Ayj . The end result is that after k steps, we
use the vector yk/‖yk‖ as an approximation to the dominant eigenvector. Note that the information in the vectors
{y1, y2, . . . , yk−1} is not used. To simplify slightly, the idea in Krylov methods is to use the full information con-
tained in these vectors to simultaneously construct approximations to the k leading eigenvalues and eigenvectors.
To be precise, suppose that we are given an n × n matrix A, some starting vector g, and a positive integer k. We
then define the Krylov subspace Kk(A, g) as linear space

Kk(A, g) = Span(g, Ag, A2g, . . . , Ak−1g).

The idea is then to restrict A to this lower dimensional space, and use the eigenvalues of the resulting k× k matrix
to approximate the eigenvalues of A. To formalize, suppose that {qj}kj=1 is an ON set of vectors obtained by
performing Gram-Schmidt on the set {Aj−1g}kj=1. Then set

Q =
[
q1 q2 · · · qk

]
,

and define the matrix T via
T = Q∗AQ.

24



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

The relationship between the eigenvalues of T and the eigenvalues of A is very well understood. A simple property
to prove is that if the eigenvalues of A decay rapidly in magnitude, then the dominant eigenvalues of T closely
approximate the dominant eigenvalues of A.

3.4. The Lanzcos algorithm

3.4.1. Problem formulation. Let A be an n × n Hermitian matrix, and let q1 be a given starting vector
of unit length (a good generic choice is to draw a Gaussian random vector g and to set q1 = g/‖g‖). The
idea of the Lanczos iteration is to build, one vector at a time, an ON basis {qj}kj=1 for the Krylov subspace
Kk(A,q1) = Span(q1, Aq1, A2q1, . . . , Ak−1q1). We formulate this task as incrementally building a matrix
factorization

(3.9)
A = Q T Q∗,

n× n n× n n× n n× n
where Q is a unitary matrix whose first column is q1, and where T is tridiagonal (and Hermitian). In our derivation,
we will treat the factorization as a full and exact factorization, but typically the objective is to stop after k steps and
obtain an approximate factorization

(3.10)
A ≈ Q(:, 1 : k) T(1 : k, 1 : k) Q(:, 1 : k)∗.

n× n n× k k × k k × n
In terms of notation, we use

Q = [q1 q2 . . . ], T =


t11 t12 0 0 · · ·
t21 t22 t23 0 · · ·

0 t23 t33 t34 · · ·

0 0
...

...

 .
3.4.2. The Lanczos iteration. We will simultaneously prove that the factorization (3.9) exists, and derive an

algorithm for computing it.

THEOREM 4. Let A be an n× n matrix, and let q1 be a unit vector. Then:

(a) There exist a triangular matrix T and an orthonormal matrix Q whose first column is q1 such that

A = QTQ∗.

(b) If q1 does not belong to an invariant subspace of A, then the factorization is unique, up to scaling of the
columns of Q by a unitary complex number.

Proof: Let us rewrite the factorization A = QTQ∗ as

(3.11) AQ = QT.

Next, let us write out (3.11) column by column. For the first column, we get

A q1 = q1 t11 + q2 t21.

Multiplying from the left by q∗1 we find
q∗1 A q1 = t11,

which uniquely determines t11. We temporarily assume that A q1−t11 q1 6= 0. Then t21 and q2 are both determined
by the relation

(3.12) t21 q2 = A q1 − t11 q1.

To be precise, (3.12) does not quite determine {t21, q2} uniquely. We see that if {t21, q2} to (3.12) is one solution
of (3.12), and if θ is a complex number such that |θ| = 1, then {θ t21, θ̄ q2} is another solution. This is the only
ambiguity involved, however (as long as the right hand side is not zero). Next we proceed to compare the second
column in (3.11):

A q2 = q1 t12 + q2 t22 + q3 t32.

25



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

Multiply by q∗2 to find t22, then determine {t32, q3} from

(3.13) t32 q3 = A q2 − t12 q1 − t22 q2.

We see that the process can be continued until completion, with all quantities uniquely determined (up to scaling
by a unitary complex scalar) as long as at step k, the vector

(3.14) A qk − tk,k−1 qk−1 − tk,k qk.

does not equal zero.

Now let us consider the special case where the vector in (3.14) does happen to be zero at step k. In this case,
we must have tk+1,k = 0, but the vector qk+1 is not uniquely determined. Existence of the factorization is not a
problem in this case — simply choose any vector qk+1 that is of unit length and is perpendicular to Span{qj}kj=1.
To establish the claim of uniqueness in part (b), suppose that

(3.15) A qk − tk,k−1 qk−1 − tk,k qk = 0,

and consider the subspace
V = Span{q1, q2, . . . qk}.

We will prove that when (3.15) holds, V is an invariant subspace of A. Suppose v ∈ V . Then v =
∑k

j=1 cjqj
for some scalars {cj}. Then Av =

∑k
j=1 cjAqj . When j < k we know that Ajqj ∈ V by construction, and

the fact that Aqk ∈ V follows from (3.15). Consequently, V is an invariant subspace of A which contradicts the
assumptions in (b) since q1 ∈ V .

The procedure is summarized in Figure 3.1. Some remarks on the theoretical result:

(1) If the initial vector q1 is a random vector drawn from a uniform distribution on the unit sphere in Cn, then
the likelihood of q1 being exactly contained in some invariant subspace is zero.

(2) While the likelihood of any tj−i,j being precisely zero is zero, it can in practice easily be a very small
number. This means that the procedure is highly unstable — a small perturbation in q1 leads to dramatic
changes in Q.

At this point, we have derived an algorithm for producing the matrix factorization A = QTQ∗ with the properties
stated in Theorem 4. We have not yet shown that for any k, the set {qj}kj=1 forms an ON basis for the Krylov
subspace Kk(A,q1) = Span(q1, Aq1, A2q1, . . . , Ak−1q1). For simplicity, let us consider the generic case where
q1 does not belong to any invariant subspace of A. Looking at the first column of (3.11) we see that

Aq1 = q1t1,1 + q2t2,1.

Since t2,1q2 = Aq1 − t1,1q1, we see that q2 ∈ Span(q1, Aq1). Since {q1, q2} is an orthonormal set, the claim
holds for k = 2. For k = 3, let us consider the second column:

Aq2 = q1t1,2 + q2t2,2 + q3t3,2.

We see that
q3 ∈ Span(q1, q2, Aq2) ⊆ Span(q1, Aq1, A2q1),

where in the second relation we used that q2 ∈ Span(q1, Aq1). The general claim now follows by a straight-
forward induction argument.

3.4.3. Implementation issues. The algorithm described in Figure 3.1 can in principle be executed while only
keeping a couple of “long” vectors in memory. The recursion relation implicitly guarantees that the columns of Q
remain orthonormal. In practice, this is hideously unstable. There are many ways to fix the situation, the easiest is
to explicitly reorthogonalize r to Span{q1, q2, . . . , qk}.

If the orthogonality of the basis vectors is maintained scrupulously, then the instability in the map {A, q1} 7→
{Q, T} is irrelevant. Indeed, whenever we are close to hitting an invariant subspace (i.e., we come across a small
tk−1,k), then picking basically “any” direction for the new qk (that is orthogonal to the previous basis vectors, of
course) will work just fine.

26



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

t11 = q∗1 A q1

r1 = A q1 − t11 q1

for j = 2, 3, . . . , n
tj−1,j = ||rj−1||
qj = 1

‖rj−1‖ rj−1
tj,j = q∗j A qj
rj = A qj − tj−1,j qj−1 − tj,j qj

end

FIGURE 3.1. The basic Lanczos scheme. Given a matrix A (which is accessed only as an operator
x 7→ A x) and a starting vector q1 such that ||q1|| = 1, compute an orthonormal matrix Q and a
triangular matrix T such that A = QTQ∗, and Q(:, 1) = q1.

To illustrate why a small tk−1,k is not only not bad, but actually a great thing, suppose that for some k, we discover
that

rk = A qk − tk−1,k qk−1 − tk,k qk = 0.

What this means is that T and Q take the form

Q = [QL QR], T =

[
TL 0

0 TR

]
,

where the partition is done so that QL has k columns, and TLL is of size k × k. This is to say that

A = QL TL Q∗L + QR TR Q∗R.

In other words, we have found one invariant subspace, and the eigenvalues of TL are exactly the eigenvalues
associated with this subspace!

In practice, what often happens is that we find some tk−1,k that is small but not quite zero. Then the vector qk+1

will have a large component of noise in its direction. As long as we make sure that qk+1 is truly orthogonal to all
previous basis vectors, however, this is fine.

3.4.4. Partial factorization and convergence analysis. In the derivation of the Lanczos procedure, we treated
it as a technique for computing a full factorization (3.9). In practice, the objective is generally to run just k steps
(for k � n) to obtain an approximate rank-k factorization like (3.10). The hope here is that the eigenvalues of
T(1 : k, 1 : k), or at least some of them, will form good approximations to the eigenvalues of A. As it happens,
this convergence is usually fast. Moreover, the convergence analysis is surprisingly sharp and informative. Here
we provide just a brief preview, for details see [13, Lecture 36] or [6, Sec. 9.1].

As before, suppose that A is a given n × n Hermitian vector, and that b is a given starting vector for the Lanczos
iteration (so that q1 = b/‖b‖). Let Q and T be the matrices resulting from the algorithm shown in Figure 3.1, and
set

Tk = T(1 : k, 1 : k) =


t11 t12 0 0 · · · 0
t21 t22 t23 0 · · · 0
0 t32 t33 t34 · · · 0
...

...
...

...
...

0 0 0 0 tkk

 , k = 1, 2, . . . , n.

Let pk denote the characteristic polynomial of Tk so that

pk(z) = det(Tk − z Ik).

Our objective is now to show that the zeros of pk, which are the eigenvalues of Tk, form good approximations to
the dominant eigenvalues of A. One result in this direction states that

(3.16) ‖pk(A) b‖ ≤ ‖p(A) b‖, ∀p ∈ P∞k ,

27



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

T11 = Q∗1 A Q1

R1 = A Q1 − T11 Q1

for j = 2, 3, . . . , r
[Qj , Tj,j−1] = qr(Rj−1)
Tj,j = Q∗j A Qj

Rj = A Qj − Tj−1,j Qj−1 − Tj,j Qj

end

FIGURE 3.2. The blocked Lanczos scheme. Given an n × n Hermitian matrix A and an n × b
starting matrix Q1 such that Q∗1 Q1 = Ib, the scheme computes an orthonormal matrix Q and a
block triangular matrix T such that A = QTQ∗, and Q(:, 1 : b) = Q1.

where P∞k is the set of k’th order “monic polynomials” which is the set of all polynomials of the form p(z) =

zk + ck−1z
k−1 + ck−2z

k−2 + · · ·+ c1z + c0 (observe that the leading term has coefficient one). At first glance, it
might not be obvious why (3.16) is helpful. To elucidate the relation, let

A = UDU∗

denote the eigenvalue decomposition of A. Then for any polynomial p we have

p(A) = Up(D)U∗.

This means that

‖p(A) b‖ = ‖Up(D)U∗ b‖ = {Set b′ = U∗b} = ‖p(D) b′‖ =

(
n∑
i=1

|p(λi) b′i|2
)1/2

.

To minimize this quantity, there is enormous pressure to pick a polynomial p whose zeros very closely approximate
the dominant eigenvalues of A, which is precisely what we want.

3.4.5. Block Lanczos. The scheme described in Figure 3.1 admits a simple block formulation. The set-up is
entirely analogous. We seek a factorization of the form (3.9), with

Q = [Q1 Q2 · · · Qr], T =


T11 T∗21 0 0 · · ·
T21 T22 T∗32 0 · · ·

0 T23 T33 T∗43 · · ·

0 0
...

...

 .
Each block Tij is of size b× b, each block Qj is of size n× b, and we assume that there are r blocks so that n = rb
(if n is not an even multiple of b the scheme can trivially be modified to allow the last block to be treated to have
fewer columns). Suppose that Q1 is a given n× b orthonormal matrix. Then

Q1 T11 + Q2 T21 = A Q1.

Left multiply by Q∗1 and used that Q∗i Qj = δij I to obtain

T11 = Q∗1 A Q1.

Then

Q2 T21 = A Q1 −Q1 T11.

Now preform a QR-factorization of the right-hand side to obtain the matrices Q2 and T21. Proceed analogously.
The result is given in Figure 3.2.

28



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

h11 = q∗1 A q1

r1 = A q1 − h11 q1

for j = 2, 3, . . . , n
hj−1,j = ||rj−1||
qj = 1

‖rj−1‖ rj−1
H(1 : j, j) = Q(:, 1 : j)∗A qj
rj = A qj −Q(:, 1 : j)H(1 : j, j)

end

FIGURE 3.3. The basic Arnoldi scheme. Given a matrix A (which is accessed only as an operator
x 7→ A x) and a starting vector q1 such that ‖q1‖ = 1, compute an orthonormal matrix Q and a
Hessenberg matrix H such that A = QHQ∗, and Q(:, 1) = q1.

3.5. The Arnoldi process

Let A be an n × n matrix, not necessarily Hermitian. In this case, it is too much to ask for a factorization (3.9)
where the middle factor is tridiagonal. Instead, we relax the requirements and seek a factorization

A = QHQ∗,

where H is in “Hessenberg” form

H =


h11 h12 h13 h14 · · ·
h21 h22 h23 h24 · · ·

0 h32 h33 h34 · · ·
0 0 h43 h44 · · ·
...

...
...

...

 .
The derivation follows the Lanczos derivation completely. Rewrite the factorization as

(3.17) AQ = QH.

The first column of (3.17) evaluates to

(3.18) A q1 = q1 h11 + q2 h21.

Multiplying from the left by q∗1 we find

h11 = q∗1 A q1.

Rearranging (3.18), we find

(3.19) h21 q2 = A q1 − h11 q1,

Note that if {h21, q2} is any solution of (3.12), and if θ is a complex number such that |θ| = 1, then {θ h21, θ̄ q2}
is another solution. Next we proceed to compare the second column in (3.17):

A q2 = q1 h12 + q2 h22 + q3 h32.

Multiply by q∗2 to find h22, then determine {h32, q3} from

(3.20) h32 q3 = A q2 − h12 q1 − h22 q2,

and continue until completion. The resulting algorithm is shown in Figure 3.3.

3.5.1. Blocked Arnoldi. The modification of the basic Arnoldi scheme shown in Figure 3.3 is entirely analo-
gous to the blocking of the Lanczos scheme in Section 3.4.5. The resulting scheme is shown in Figure 3.4.

29



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

H11 = Q∗1 A Q1

R = A Q1 −Q1H11

for j = 2, 3, . . .
[Qj ,Rj ] = qr(R, 0)
Hj,j−1 = Rj

H1,j

H2,j
...

Hj,j

 =


Q∗1
Q∗2
...

Q∗j

A Qj

Rj = A Qj −
∑j

i=1 QiHi,j

end

FIGURE 3.4. The blocked Arnoldi scheme. Given an n× n matrix A and an n× b starting block
Q1 such that Q∗1Q1 = Ib, the schemes computes an orthonormal matrix Q and a block Hessenberg
matrix H such that A = QHQ∗, and Q(:, 1 : b) = Q1.

3.6. A comparison of randomized methods and Krylov methods

The randomized methods described in Chapter 2 and the Krylov methods described in this chapter are similar in
that they both seek to construct a “thin” orthonormal matrix Q such that

A ≈ QQ∗A.

The two classes of techniques are similar in that the both interact with A only via its action on given sets of vectors
or thin matrices. (For non-Hermitian matrices, the randomized techniques also need application of A∗, while
Krylov methods generally do not.)

Let us first compare a basic single-vector Krylov method (e.g. Figure 3.3) with the basic randomized method
(e.g. Figure 2.1). To keep the comparison simple, suppose that we take ` steps of the Krylov method, and use a
Gaussian random matrix with ` columns in the randomized scheme. Then, to simplify greatly, the methods compare
as follows:

Basic RSVD scheme (Figure 2.1) Basic Arnoldi scheme (Figure 3.3)
Interaction with A: ` matrix-vector multiplications that can all

be executed independently of each other.
In particular, they can be executed in par-
allel as a matrix-matrix multiplication.

` matrix-vector multiplications that have
to be executed consecutively, one at a time.

Speed: For a fixed `, faster. For a fixed `, slower.
Accuracy: For a fixed ` less accurate, in particular if

the singular values decay slowly.
For a fixed `, more accurate.

Other: Also requires application of A∗ to ` vec-
tors.

Can sometimes get high accuracy not only
on leading singular values, but also on the
smallest ones.

The randomized power method described in Section 2.7 and the blocked Krylov methods described in Sections
3.4.5 and 3.5.1 represent two ways to bridge the gap between the extreme versions of the algorithms to obtain
hybrid methods that have some of the best qualities of both schemes. These methods are conceptually very close
(in particular the randomized method with an “extended sampling matrix” described in Section 2.7.3). The key
point here is that by using a Gaussian random matrix as the starting point, one can often get away with taking a
very small number of steps in the “power iteration” and thereby increasing computational speed (primarily through
a reducing the amount of communication required).

30



CHAPTER 4

Interpretation of data: The CUR and Interpolative Decompositions

4.1. The interpolative decomposition

4.1.1. Basic idea. Any matrix A of size m×n and rank k, where k < min(m,n), admits a so call “interpola-
tive decomposition (ID)” which takes the form

(4.1)
A = C Z,

m× n m× k k × n

where the matrix C is given by a subset of the columns of A and where Z is well-conditioned in a sense that we
will make precise shortly. The ID has several advantages, as compared to, e.g., the QR or SVD factorizations:

• If A is sparse or non-negative, then C shares these properties.
• The ID require less memory to store than either the QR or the SVD.
• Finding the indices associated with the spanning columns is often helpful in data interpretation.
• In the context of numerical algorithms for discretizing PDEs and integral equations, the ID often preserves

“the physics” of a problem in a way that the QR or SVD do not.

One shortcoming of the ID is that when A is not of precisely rank k, then the approximation error by the best
possible rank-k ID can be substantially larger than the theoretically minimal error. (In fact, the ID and the column
pivoted QR factorizations are closely related, and they attain exactly the same minimal error.)

4.1.2. Notation. While the ID is in many ways a very “natural” factorization, the notation required to fully
describe it is slightly cumbersome. Consider again the factorization (4.1). We let Js denote an index vector of
length k that identifies the k columns that form C so that

C = A(:, Js).

The columns listed in Js are called the “skeleton” columns. We put the remaining indices are put in a vector of
“residual” indices Jr so that we obtain a disjoint partitioning of the index set

[1, 2, 3, . . . , n] = Js ∪ Jr.

Next observe that the relation (4.1) implies that the matrix Z must contain as a submatrix the k × k identity matrix
Ik. Specifically, restricting (4.1) to the k columns identified in Js, we see that it must necessarily be the case that

Z(:, Js) = Ik.

The remaining n− k columns of Z consist of a k × (n− k) matrix

T = Z(:, Jr).

We refer to the entries of T as expansion coefficients since each column of T contains the expansion coefficients
used to build the corresponding column of A using the k skeleton columns as a basis. Finally, let P denote the
n× n permutation matrix defined by P = In(:, [Js, Jr]), so that

AP = A(:, [Js, Jr]) =
[
C,A(:, Jr)

]
.

Then
Z =

[
Ik T

]
P∗.



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

4.1.3. Three flavors of ID: The row, column, and double-sided ID. Sections 4.1.1 and 4.1.2 describe a
factorization where we use a subset of the columns of A to space its column space. Naturally, this factorization has
a sibling which uses the rows of A to span its row space. In other words A also admits the factorization

(4.2)
A = X R,

m× n m× k k × n
where R is a matrix consisting of k rows of A, and where X is a matrix that contains the k × k identity matrix. We
let Is denote the index vector of length k that marks the “skeleton” rows so that R = A(Is, :).

Finally, there exists a so called double-sided ID which takes the form

(4.3)
A = X As Z,

m× n m× k k × k k × n
where X and Z are the same matrices as those that appear in (4.1) and (4.2), and where As is the k × k submatrix
of A given by

As = A(Is, Js).

In this chapter, we will for the most part discuss techniques for computing the column ID. With very minor modi-
fications, these techniques can be used to compute the row ID and the double-sided ID too.

4.2. Existence of the ID

That any matrix of precise rank k admits factorization like (4.1), (4.2), and (4.3), is a direct consequence of the
definition of the concept of rank.1 A slightly deeper result is that there must always exist a well-conditioned ID. To
be precise, we will prove that there exist IDs for which every entry of the “basis matrices” X and Z is bounded in
modulus by one.

THEOREM 5. Let A be an m×n matrix of precisely rank k, where k < min(m,n). Then A admits a factorization

(4.4)
A = C Z,

m× n m× k k × n
where C = A(:, Js) for some index vector Js of length k contained in [1, 2, . . . , n], and where

max
i,j
|Z(i, j)| ≤ 1.

PROOF. Let us first consider a special case where m = k so that A is of size k × n. Then define the index
vector Js as the set of k indices that maximize the determinant of A(:, Js). In other words:

(4.5) Js = argmax{|det(A(:, J))| : J is a subset of size k of [1, 2, . . . , n]}.
(The max may or may not unique, this does not matter.) Let Jr denote an index vector containing the “remaining”
indices so that Js ∪ Jr = [1, 2, . . . , n] in a disjoint union. Let P denote the permutation matrix for which

(4.6) AP = [A(:, Js) A(:, Jr)].

Observe that A(:, Js) must be non-singular, so we can rewrite (4.6) as

(4.7) AP = A(:, Js) [Ik A(:, Js)
−1A(:, Jr)].

Setting

(4.8) T := A(:, Js)
−1A(:, Jr),

we find that we can write (4.7) as

(4.9) A = A(:, Js)︸ ︷︷ ︸
=:C

[Ik T]P∗︸ ︷︷ ︸
=:Z

.

1Suppose A has rank k, so that its column space has dimension k. This means that the set of columns of A must contain a set of at
least k independent vectors (otherwise the rank would be less than k). Once a set of k linearly independent columns has been fixed, we see
that any of the remaining columns can be expressed as a linear combination of the chosen k (otherwise the rank would be higher than k).

32



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

We will next prove that every element of T has modulus at most one. Let {ji}ni=1 denote the chosen permutation
of [1, 2, . . . , n] such that

[Js Jr] = [j1 j2 j3 · · · jn].

We now find that the definition of T in (4.8) implies that[
cj1 cj2 · · · cjk

]︸ ︷︷ ︸
=A(:,Js)

T =
[
cjk+1

cjk+2
· · · cjn

]︸ ︷︷ ︸
=A(:,Jr)

.

Cramer’s rule provides us with explicit solution formulas for each element of T. For instance,

T(1, 1) =
det
[
cjk+1

cj2 cj3 cj4 · · · cjk
]

det
[
cj1 cj2 cj3 cj4 · · · cjk

] , T(1, 2) =
det
[
cjk+2

cj2 cj3 cj4 · · · cjk
]

det
[
cj1 cj2 cj3 cj4 · · · cjk

] ,
T(2, 1) =

det
[
cj1 cjk+1

cj3 cj4 · · · cjk
]

det
[
cj1 cj2 cj3 cj4 · · · cjk

] , T(2, 2) =
det
[
cj2 cjk+2

cj3 cj4 · · · cjk
]

det
[
cj1 cj2 cj3 cj4 · · · cjk

] ,
et cetera. Observe that in each formula, the denominator consists of the determinant formed by the k columns of
A that maximize the modulus of the determinant. The numerator is obtained by swapping out one of the columns
from the maximizing set by a different column. It follows directly from the definition of Js in (4.5) that each such
ratio must be bounded by one in modulus.

All that remains is to relax our temporary assumption that the matrix A must have precisely k rows. In the general
case, observe that when A has exact rank k, it admits a factorization

(4.10)
A = E F,

m× n m× k k × n
for some matrices E and F (their properties do not matter beyond the fact that they both have precise rank k). We
have shown that F admits an ID factorization with the required properties, that is,

(4.11)
F = F(:, Js) Z,

k × n k × k k × n
where every entry of Z is bounded by one in modulus. Combining (4.10) and (4.11) we get

(4.12) A = EF(:, Js)Z.

Since Z(:, Js) = Ik, we can restrict (4.12) to the columns in Js to see that

(4.13) A(:, Js) = EF(:, Js),

Combining (4.12) and (4.13) we finally get

(4.14) A = A(:, Js)Z,

which is the factorization we sought. �

4.3. Deterministic techniques for computing the ID

4.3.1. Computing the ID from the column pivoted QR. The ID and the column pivoted QR factorization
(CPQR) are closely related. To demonstrate this, let A be an m× n matrix. At first, let us assume that A has exact
rank k, and that we have computed its CPQR so that

(4.15)
A(:, J) = Q1 R.
m× n m× k k × n

(Our choice to endow the “Q” factor with a subscript is to keep notation consistent with the general case where A
does not have exact rank k.) Now let us partition

J =
[
Js Jr

]
,(4.16)

R =
[
R11 R12

]
,(4.17)

33



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

in such a way that Js holds the first k indices in J , and R11 is the leading k × k submatrix of R. Observe that Js
points to the k columns on A that were chosen as “pivots.” Set

(4.18) C = A(:, Js).

Then (4.15) can be written

(4.19)
[
C A(:, Jr)

]
=
[
Q1R11 Q1R12

]
.

Looking at the first k columns of (4.19) we see that it must be the case that

C = Q1R11.

Next, observe that R11 is necessarily invertible (since A has rank k, and the pivoting procedure ensures that the
columns in C are linearly independent). This means that (4.19) can be rewritten as

(4.20) A = C
[
Ik T

]
P∗︸ ︷︷ ︸

=:Z

,

where P is the permutation matrix associated with J (as usual), and where

(4.21) T := R−111 R12.

Equation (4.20) tells us that the CPQR factorization is an ID in (very slight) disguise.

Next let us consider the case where A does not have exact rank k. Suppose that we have computed the full CPQR,
which then takes then form

(4.22) A(:, J) =
[
Q1 Q2

] [ R11 R12

0 R22

]
,

where Q1 holds the first k columns of Q and R11 is k × k. Let us again partition the index vector as dictated by
(4.16), define C via (4.18), and T via (4.21). Then we obtain the approximate rank-k factorization

A ≈ Q1

[
R11 R12

]
P∗ = Q1R11

[
Ik R−111 R12

]
P∗ = C

[
Ik T

]
P∗ = C Z.

We also have an exact expression for the approximation error from (4.22):

A− CZ = QRP∗ −Q1

[
R11 R12

]
P∗ =

[
Q1 Q2

] [ R11 R12

0 R22

]
P∗ −Q1

[
R11 R12

]
P∗ =

[
0 Q2R22

]
P∗.

In other words, the approximation error in the ID is ‖
[
0 Q2R22

]
P∗‖ = ‖R22‖, which is exactly the same as the

approximation error in the truncated CPQR from which we obtained it.

REMARK 4.1. In practice, one typically only take k steps of the CPQR algorithm. At that point, we have a partial
factorization

AP ≈ Q1

[
R11 R12] +

[
0 B
]

where B contains the parts of the n− k non-pivot columns that remain after projecting away from the span of Q1.
Clearly BP̃ = Q2R22 for some permutation matrix P̃, but one does not need to carry out these steps in order to
determining the approximation error since ‖B‖ = ‖R22‖.

4.3.2. Optimality of the QR procedure.

4.3.3. Computing the row ID and the double sided ID. First observe that the row ID is obtained by applying
the procedure described in Section 4.3.1 to the rows of A. In other words, the first step is to compute a partial CPQR
of A∗.

For the double sided ID, we start by computing a column ID,

A ≈ A(:, Js) Z.

Then simply compute a row ID of the matrix C containing the k chosen columns,

A(:, Js) = X A(Is, Js).

Observe that this second factorization is exact since the matrix A(:, Js) has k columns, and therefore necessarily
has rank k (provided that A has rank at least k).

34



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

Compute a column ID so that A ≈ A(:, Js) Z.
function [Js, Z] = ID col(A, k)

[Q,R, J ] = qr(A, 0);
T = (R(1 : k, 1 : k))−1R(1 : k, (k + 1) : n);
Z = zeros(k, n)
Z(:, J) = [Ik T];
Js = J(1 : k);

Compute a row ID so that A ≈ X A(Is, :).
function [Is, X] = ID row(A, k)

[Q,R J ] = qr(A∗, 0);
T = (R(1 : k, 1 : k))−1R(1 : k, (k + 1) : n);
X = zeros(m, k)
X(J, :) = [Ik T]∗;
Is = J(1 : k);

Compute a double-sided ID so that A ≈ X A(Is, Js) Z.
function [Is, Js,X,Z] = ID double(A, k)

[Js, Z] = ID col(A, k);
[Is, X] = ID row(A(:, Js), k);

FIGURE 4.1. Deterministic algorithms for computing the column, row, and double-sided ID via
the column pivoted QR factorization. The input is in every case anm×nmatrix A and a target rank
k. Since the algorithms are based on the CPQR, it is elementary to modify them to the situation
where a tolerance rather than a rank is given.

The three algorithms for computing the three flavors of the ID via the CPQR are summarized in Figure 4.1.

REMARK 4.2. The double-sided ID could also be computed by independently computing the row and column IDs
of the original matrix A, as follows:

(4.23) [Js, Z] = ID col(A, k) and [Is, X] = ID row(A, k).

Then we automatically find that
A ≈ X A(Is, Js) Z.

While there are circumstances where this procedure may be beneficial, it is in general more expensive to execute.
Moreover, the method in Figure 4.1 is guaranteed to produce an factorization whose approximation error is exactly
the same as the error incurred by the first column pivoted ID. Computing the double sided ID via (4.22) involves
two approximations, and can easily result in a larger error.

4.4. Computing interpolative decompositions via randomized sampling

The randomized range finder described in Section 2.3 is particularly effective when used in conjunction with the
interpolative decomposition. To illustrate, let us suppose that A is an m × n matrix of rank k for which we can
rapidly evaluate the maps x 7→ Ax and x 7→ A∗ x. Using the randomized sampling technique, we then draw
an n × k random matrix Ω, form a sample matrix Y = AΩ, orthonormalize its columns to form the matrix
Q = orth(Y), and finally form the rank-k factorization

A ≈ Q
(
Q∗A

)
.

This process requires the evaluation of the matrix-matrix product Q∗A. It turns out that by using the ID instead,
we can skip this step. Instead of applying Gram-Schmidt to the columns of Y, we apply Gram-Schmidt to the rows
of Y to find a good spanning set of rows. To be precise, we execute the command rows,

[X, Is] = ID row(Y, `).

35



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

ALGORITHM: FAST RANDOMIZED ID

Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = k).

Outputs: An m× k interpolation matrix X and an index vector Is ∈ Nk such that A ≈ XA(Is, : ).

Stage A:
(1) Form an n× (k + p) SRFT Ω.
(2) Form the sample matrix Y = A Ω.

Stage B:
(3) Form an ID of the n× (k + p) sample matrix: [X, Is] = ID row(Y, k).

FIGURE 4.2. An O(mn log(k)) algorithm for computing an interpolative decomposition of A.

Then

(4.24) Y = XY(Is, : ).

Now, automatically (!), the couple {X, Is} also forms an ID for A,

(4.25) A = XA(Is, : ).

(See Remark 4.3 for details.) The beauty here is that once we have the sample matrix Y, we do not need to revisit
all of A to construct a rank-k factorization — all we need to do is to extract the k rows of A indicated by the index
vector Is.

By combining the idea of using an SRFT for “Stage A” (at complexity O(mn log(k))) with an ID for “Stage B” (at
complexity O((m + n)k)), we get the accelerated algorithm for constructing an ID described in Figure 4.2. With
a slight modification to Stage B, we get the O(mn log(k)) algorithm for computing an SVD described in Figure
4.3. More details (including an error analysis for the case when A has only approximate rank k) can be found in
[8, Sec. 5.2].

REMARK 4.3. It is perhaps not immediately clear why the ID {X, Is} computed for Y should automatically also
be an ID for A. To see why this should be, first observe that since the columns of Y form a basis for the columns
of A, there must exist a k × n matrix F such that

(4.26) A = YF.

Now insert the relation (4.24) into (4.26):

(4.27) A = XY(Is, : )F.

Restrict (4.27) to the rows in Is, and exploit that X(Is, :) = Ik to find

(4.28) A(Is, :) = X(Is, :)Y(Is, : )F = Y(Is, : )F.

Finally, insert (4.28) in (4.27) to attain (4.25).

4.5. The CUR Decomposition

A rank k CUR factorization of a matrix A ∈ Cm×n is given by

A ≈ C U R,
m× n m× k k × k k × n

where C consists of k columns of A, and R consists of k rows of A. The decomposition is typically obtained in
three steps [10]: (1) Some scheme is used to assign a weight or the so called leverage score (of importance) to
each column and row in the matrix. This is typically done either using the `2 norms of the columns and rows or by
using the leading singular vectors of A [5]. (2) The matrices C and R are constructed via a randomized sampling

36



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

ALGORITHM: FAST RANDOMIZED SVD

Inputs: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = k).

Outputs: Matrices U, Σ, and V in an approximate rank-(k + p) SVD of A. (I.e. U and V are orthonormal
and Σ is diagonal.)

Stage A:
(1) Form an n× (k + p) SRFT Ω.
(2) Form the sample matrix Y = B Ω.

Stage B:
(3) Form an ID of the sample matrix Y: [X, Is] = ID row(Y, k).
(4) Compute the QR decomposition of the interpolation matrix [Q,R] = qr(X).
(5) Extract k + p rows of A: Arows = A(Is, :).
(6) Multiply R and Arows to form the (k + p)× n matrix F = RArows.
(7) Decompose the matrix F in a singular value decomposition [Û, Σ, V] = svd(F).
(8) Form U = QÛ.

FIGURE 4.3. AnO(mn log(k)) algorithm for computing a partial SVD. If an SVD of exactly rank
k is desired, then truncate the factors computed in Step (7).

procedure, using the leverage scores to assign a sampling probability to each column and row. (3) The U matrix is
computed via:

(4.29) U ≈ C†AR†,

with C† and R† being the pseudoinverses of C and R.

Many techniques for computing CUR factorizations have been proposed. In particular, we mention the recent work
of Sorensen and Embree [11] on the DEIM-CUR method. A number of standard CUR algorithms is implemented
in the software package rCUR [2]. The methods in the rCUR package utilize eigenvectors to assign weights to
columns and rows of A. Computing the eigenvectors exactly amounts to doing the SVD which is very expensive.
However, instead of the full SVD, when a CUR of rank k is required, we can utilize instead the randomized SVD
algorithm [8] to compute an approximate SVD of rank k at substantially lower cost.

REMARK 4.4 (Conditioning of CUR). For matrices whose singular value experience substantial decay, the accuracy
of the CUR factorization can deteriorate due to effects of ill-conditioning. To simplify slightly, one would normally
expect the leading k singular values of C and R to be of roughly the same order of magnitude as the leading k
singular values of A. Since low-rank factorizations are most useful when applied to matrices whose singular values
decay reasonably rapidly, we would typically expect C and R to be highly ill-conditioned, with condition numbers
roughly on the order of σ1(A)/σk(A). Hence, in the typical case, evaluation of the formula (4.29) can be expected
to result in substantial loss of accuracy due to accumulation of round-off errors. Observe that the ID does not suffer
from this problem; in (4.3), the matrix Askel tends to be ill-conditioned, but it does not need to be inverted. (The
matrices X and Z are well-conditioned.)

4.6. Deterministic techniques for computing the CUR

In this section, we describe a deterministic technique we label the CUR-ID for computing the CUR factorization
from the double-sided ID. We start with a heuristic derivation in Section 4.6.1, and then proceed to prove that the
error incurred is modest in Section 4.6.2.

4.6.1. Converting a double-sided ID to a CUR decomposition. The CUR-ID algorithm is based on the
double-sided ID and as a starting point, we assume the factorization (4.3) has been computed using the procedures

37



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

ALGORITHM: CUR FROM COLUMN PIVOTED QR

Inputs: An m× n matrix A, and a target rank k.

Outputs: A k × k matrix U, and index vector Is and Js such that A ≈ A(:, Js)UA(Is, :).

(1) [Is, Js,X,Z] = ID double(A, k).
(2) U = Z(A(Is, :))

†.

FIGURE 4.4. An algorithm for computing a CUR factorization via two column pivoted QR fac-
torizations. Very important: When the double-sided ID is constructed, it is in this context crucial
that the second ID is performed only the subset of columns picked by the first ID, not on the full
matrix, see Remark 4.6.

described in Section 4.3.3. In other words, we assume that the index vectors Is and Js, and the basis matrices X
and Z, are all available. We then define

(4.30) C = A(:, Js) and R = A(Is, :).

Consequently, C and R are respectively subsets of columns and of rows of A, with Js and Is determined by the
column pivoted QR factorizations. Next we construct a k × k matrix U such that A ≈ CUR. We know that

(4.31) A ≈ C Z,

and we seek a factor U such that

(4.32) A ≈ C U R.

By inspecting (4.31) and (4.32), we find that we would achieve our objective if we could determine a matrix U such
that

(4.33)
U R = Z.

k × k k × n k × n
Unfortunately, (4.33) is an over-determined system, but at least intuitively, it seems plausible that it should have a
fairly accurate solution, given that the rows of R and the rows of V∗ should, by construction, span roughly the same
space (namely, the space spanned by the k leading right singular vectors of A). Solving (4.33) in the least-square
sense, we arrive at our definition of U:

(4.34) U := ZR†.

The resulting algorithm is summarized in Figure 4.4.

REMARK 4.5. Observe that for purposes of data interpretation, the double-sided ID is just as useful as the CUR,
and does not suffer from problems of ill-conditioning, cf. Remark 4.4.

REMARK 4.6. The techniques for computing the double sided ID that we have described are based on two single-
sided IDs. Observe that these can be executed in a few different ways. For instance, either of the following two
methods work well:

Method 1: Method 2:
[Js, Z] = ID col(A, k); [Js, Z] = ID col(A, k);
[Is, X] = ID row(A(:, Js), k); [Is, X] = ID row(A, k);

The first step of both methods is the same: perform CPQR on the columns of A to find the spanning columns.
In the second step, Method 1 performs a row ID using only the columns chosen in the first step, while Method
2 performs a row ID on all of A. For purposes of computing the double-sided ID, we generally recommend the
use of Method 1 since it is computationally more efficient, but either method works fine. When we compute the
CUR decomposition, however, it is crucial that Method 1 is used. The reason is that Method 1 inherently seeks to
construct a matrix A(Is, Js) that is as well conditioned as possible. When using Method 2, one can easily end up
with a matrix A(Is, Js) that is far worse conditioned than is necessary.

38



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

4.6.2. Error analysis of the CUR-ID algorithm. The construction of C, U, and R in Section 4.6.1 was based
on heuristics. We next demonstrate that the approximation error is comparable to the error resulting from the
original QR-factorization. First, let us define E and Ẽ as the errors in the column and row IDs of A, respectively,

A = C Z + E,(4.35)

A = X R + Ẽ.(4.36)

Recall that E is a quantity we can control by continuing the original QR factorization of A until ‖E‖ is smaller
than some given threshold. We will prove that ‖Ẽ‖ cannot be all that much larger than ‖E‖, which leads us to the
following error bound for the algorithm in Figure 4.4:

THEOREM 6. Let A be an m × n matrix. Suppose that we have computed a column ID of rank k for A with
error term E, as in (4.35). Suppose further that we next compute the row ID {Is,X} of C, and use this row ID to
approximate A, resulting in an approximation error Ẽ, as in (4.36). Then

(4.37) ‖Ẽ‖ ≤ (1 + ‖T‖) ‖E‖,
where T is the k×(m−k) matrix of expansion coefficients obtained while computing the row ID of C. Additionally,
it holds that

(4.38) ‖A− CUR‖ ≤ (2 + ‖T‖) ‖E‖.

The error bound in Theorem 6 involves the term ‖T‖. We can provide a simplistic bound for this quantity as
follows: Recall that the matrix T contains the expansion coefficients in the interpolative decomposition of C.
These can be guaranteed [7, 9] to all be bounded by 1 + ν in magnitude for any positive number ν. The cost
increases as ν → 0, but for, e.g., ν = 1, the cost is very modest. Consequently, we find that for either the spectral
or the Frobenius norm, we can easily guarantee ‖T‖ ≤ (1 + ν)

√
k(n− k), with practical norm often far smaller.

We will prove Theorem 6 in two steps. Lemma 7 asserts that when (4.35) and (4.36) hold, then ‖A−CUR‖ ≤ E+Ẽ.
Then Lemma 8 provides the information we need to bound ‖Ẽ‖.

LEMMA 7. Let A be an m × n matrix that satisfies the approximate factorizations (4.35) and (4.36). Suppose
further that R is full rank, and that the k × k matrix U is defined by (4.34). Then

(4.39) ‖A− CUR‖ ≤ ‖E‖+ ‖Ẽ‖.

PROOF. Using first (4.34) and then (4.35), we find

(4.40) A− CUR = A− CZR†R = A− (A− E)R†R =
(
A− AR†R

)
+ ER†R.

To bound the term A− AR†R we use (4.36) and the fact that RR†R = R to achieve

(4.41) A− AR†R = A− (WR + Ẽ)R†R = A−WR− ẼR†R = Ẽ− ẼR†R = Ẽ(I− R†R).

Inserting (4.41) into (4.40) and taking the norms of the result, we get

‖A− CUR‖ = ‖Ẽ(I− R†R) + ER†R‖ ≤ ‖Ẽ(I− R†R)‖+ ‖ER†R‖ ≤ ‖Ẽ‖+ ‖E‖,

where in the last step we used that RR† and I− RR† are both orthonormal projections. �

LEMMA 8. Let A be an m× n matrix that admits the factorization (4.35), with error term E. Suppose further that
I = [Is, Ir] and T form the output of the row ID of the matrix C, so that

(4.42) C = XC(Is, :), where X = P

[
I

T∗

]
,

and where P is the permutation matrix for which PA(I, :) = A. Now define the matrix R via

(4.43) R = A(Is, :).

Observe that R consists of the k rows of A selected in the skeletonization of C. Finally, set

(4.44) F =
[
−T∗ I

]
P∗.

39



Course notes APPM 5720 — P.G. Martinsson February 26, 2016

Then the product XR approximates A, with a residual error

(4.45) Ẽ = A− XR = P

[
0

FE

]
.

PROOF. From the definitions of X in (4.42) and R in (4.43) we find

(4.46) A− XR = PA(I, :)− XR = P

[
A(Is, :)
A(Ir, :)

]
− P

[
I

T∗

]
A(Is, :)

= P

[
0

A(Ir, :)− T∗A(Is, :)

]
= P

[
0

FA

]
.

To bound the term FA in (4.46), we invoke (4.35) to obtain

(4.47) FA = FCV∗ + FE = {Insert (4.42)} = FXC(Is, :)V
∗ + FE = FE,

since FX = 0 due to (4.42) and (4.44). Finally, insert (4.47) into (4.46) to obtain (4.45). �

PROOF OF THEOREM 6. Equation (4.45) allows us to bound the norm of the error Ẽ in (4.36). Simply observe
that the definition of F in (4.44) implies that for any matrix B we have:

FB =
[
−T∗ I

]
P∗B =

[
−T∗ I

] [B(Is, :)
B(Ir, :)

]
= −T∗B(Is, :) + B(Ir, :),

so that:

(4.48) ‖FB‖ = ‖B(Ir, :)− T∗B(Is, :)‖ ≤ ‖B(Ir, :)‖+ ‖T‖ ‖B(Is, :)‖ ≤ (1 + ‖T‖) ‖B‖.
We can now prove (4.37), by applying the bound (4.48) to (4.45), with E in place of B:

‖Ẽ‖ =

∥∥∥∥P

[
0

FE

]∥∥∥∥ ≤ ∥∥∥∥[ 0
FE

]∥∥∥∥ = ‖FE‖ ≤ (1 + ‖T‖) ‖E‖.

To establish (4.38), we use (4.39) and (4.37):

‖A− CUR‖ ≤ ‖E‖+ ‖Ẽ‖ ≤ (2 + ‖T‖) ‖E‖.
�

4.7. Randomized techniques for computing the CUR

40



Bibliography

[1] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint Whaley, James Demmel, Jack Dongarra, Iain Duff,
Sven Hammarling, Greg Henry, et al. An updated set of basic linear algebra subprograms (blas). ACM Transactions on Mathematical
Software, 28(2):135–151, 2002.

[2] András Bodor, István Csabai, Michael Mahoney, and Norbert Solymosi. rCUR: an R package for CUR matrix decomposition. BMC
Bioinformatics, 13(1), 2012.

[3] Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S Duff. A set of level 3 basic linear algebra subprograms. ACM
Transactions on Mathematical Software (TOMS), 16(1):1–17, 1990.

[4] P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix for improved kernel-based learning. J.
Mach. Learn. Res., 6:2153–2175, 2005.

[5] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix decompositions. SIAM J. Matrix Anal. Appl.,
30(2):844–881, 2008.

[6] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins
University Press, Baltimore, MD, third edition, 1996.

[7] Ming Gu and Stanley C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput.,
17(4):848–869, 1996.

[8] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness: Probabilistic algorithms for construct-
ing approximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

[9] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. Randomized algorithms for the low-rank
approximation of matrices. Proc. Natl. Acad. Sci. USA, 104(51):20167–20172, 2007.

[10] Nikola Mitrovic, Muhammad Tayyab Asif, Umer Rasheed, Justin Dauwels, and Patrick Jaillet. Cur decomposition for compression and
compressed sensing of large-scale traffic data. In Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE Conference
on, pages 1475–1480. IEEE, 2013.

[11] D. C. Sorensen and M. Embree. A DEIM Induced CUR Factorization. ArXiv e-prints, July 2014.
[12] G. W. Stewart. On the early history of the singular value decomposition. SIAM Rev., 35(4):551–566, 1993.
[13] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam, 1997.


