NOTES ON ADAPTIVE RANK APPROXIMATION

Sergey Voronin

Abstract: We discuss the efficient construction of various low rank approx-
imations via randomized algorithms when the singular value distribution of
the matrix is not known.

1. INTRODUCTION

The idea behind randomized algorithms for constructing low rank approximations is to apply the
factorization to a smaller matrix. Given A € R™*™ we can construct samples of the column space
of A via the computation Y = AG with G a Gaussian random matrix where Y is of size m x (k+p)
with k£ the desired rank and p a small oversampling parameter. We can then construct a matrix
with orthonormal columns (ON) Q of size m x (k+ p) via a QR factorization of Y. If Y captures a
good portion of the range of A (assuming k is sufficiently large), then we expect that QQ*A ~ A.
Note that while Q*Q = I, the matrix product QQ* multiplies out to the identity only in the case
that Q is a square orthogonal matrix. Notice that P = QQ* is a projector onto the range of Q
and hence onto that of Y (where we assume that Q is obtained via a compact QR factorization of
Y). To see this, notice that P? = P and for any v € R(Q), Pv = v. Note also that in the case
that Y captures the entire range of A we have equality, as per the lemma below:

Lemma 1.1. Let A € R™*" and let Q € R™*" be an orthonormal matrixz. Then the following are
equivalent:

(1) R(A) CR(Q) (the range of A is a subset of the range of Q)
(2) A=QQ’A

Proof. Assume (1) holds. Then this implies that there exists a matrix S € R™*" such that A = QS.
It follows that:

QQ'A=QQ"QS=Qs=A
since QTQ = I. Hence, (1) = (2). Next, assume (2) holds. Then:

A=QQ"A=Q(Q"A) — R(A)CR(Q)
Hence, (2) = (1). O

Given that QQ*A ~ A, we perform a factorization of Q*A which is of size (k + p) x n. Assuming
k < min(m,n), the matrix Q*A is substantially smaller than A. For example, we can perform the
SVD of rank k + p of B = Q*A and then multiply by Q to get an approximate SVD of A:

B =UDV* — A~ (QU)DV*

Notice that instead of performing the SVD of B, we can also perform e.g. a pivoted QR factorization
of B to get an approximate QR of A:

BP = QR — AP ~ (QQ)R

The main computational challenge is in the construction of an ON matrix Q such that QQ*A =~ A.

The simplest approach to follow is to do as above, forming Y = AG. The problem is that without

advanced knowledge of the singular value distribution of A, it is hard to guess an optimal £k in

the size of the n x (k + p) matrix G. If k is chosen too small relative to the numerical rank of A,

then QQ*A will not be close to A. On the other hand, if k is chosen too large, then the matrix
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B = Q*A, once computed (in itself an expensive operation because of the QR on Y) will be large
and not much savings could be obtained by doing the factorization of choice on B instead of A.
Notice that the bound ||(I — QQ*)A|| is exactly the error bound between the obtained factorization
and the original matrix, since the factorization of Q*A is exact.

2. DISCUSSION OF ALGORITHMS TO CONSTRUCT Q

The first algorithm we discuss produces Q such that
(1) (1= QQ"A| <,

but only with a certain very high probability (that is, it can potentially fail). The next two
algorithms we discuss guarantee (1) on exit.

2.1. Algorithm H. The algorithm pasted in Figure 1 is algorithm 4.2 from [1]:

FicUre 1. Algorithm H

ALGORITHM 4.2: ADAPTIVE RANDOMIZED RANGE FINDER
Given an m x n matriz A, a tolerance €, and an integer r (e.g. r = 10), the
following scheme computes an orthonormal matriz Q such that (4.2) holds
with probability at least 1 — min{m.n}10"".
1 Draw standard Gaussian vectors w™, ... w( of length n.
2 Fori=1,2,...,r, compute y* = Aw®.
3 j7=0.
4 QW =[], the m x 0 empty matrix.
5  while max{||y(j+1)||_’ [+, ||y(j+r)||} > ¢/(104/2/7),
6 j=Frk ‘ _
7 Overwrite y) by (I— QU-D(QU-D)*)yl).
8 qt) =4/ ||y(J)J|_
9 QU = [Q(jfl) q j)}.
10 Draw a standard Gaussian vector w{+") of length n.
11 y(j+T) s (I s Q(J)(Q(J))*) Awltr)
12 fori=(j+1),[G+2),....,(i+r—1),
13 Overwrite ¢ by y@ — g0 (q(j), y(i)>.
14 end for
15 end while
16 Q=QU.

We now describe how this algorithm works. Notice that the first three steps can be rewritten as:
Input: Q € R™*",y € R™ such that Q*Q = 1I,..
Iteration:

<

y = (1-QQ%y
q

I'»]
I
o<

|
.4
Output: Q € R™*(r+1),

The lemma below proves that on output, the range of the matrix Q has expanded and orthonor-
mality of Q has been preserved.



Lemma 2.1. The output of the above procedure is a matriz Q € R™ 1) such that:

Note: we must have y ¢ R(Q) as otherwise QQ*y =y andy = (1—QQ*)y =0

Proof. To show part (a), we must show that:
(al) if z € span(R(Q) Uy) then z € R(Q) and
(a2) if z € R(Q) then z € span(R(Q) Uy).

Let us consider (al). Since, z € span(R(Q) Uy) it follows that z = ap + By for some o, € R
where p € R(Q) = p = Qr for some vector r. Also, since (in the iteration step) y = (I - QQ")y,
we have that y =y + QQ*y and since q = II%\I’ we have that y = ||¥||q. Thus:

z = ap+ By =aQr+BF +QQ%y) = Q(ar + SQ*Y) + Y = Q(ar + Q*Y) + 5|¥]|q

_ ar + fQ*y A
~ 0.4 "] e ri@.a) - (@)

Next, we consider (a2). Since z € span(R(Q)), z= Qw for some vector w which can be split into
two parts w1, we. It follows that:

y *
= Qw; + -QQ
32 = Qwi (1= QQ")y

o<wl—mo*y) [y € span(R(Q) Uy)

z = [Qq][ ] Qw; +qw2 = Qw; + =

Thus, (a) is established. To show (b), we compute:

Q'a - [Q.qQ.q) - [2:8 =1

where we have used that

Q'q=(q9"Q)°

\<.

Q"

( —QQ)y=Q- L —Q@-L =

| 131 Iyl

<

O

Next, let us look at the remaining steps on lines 10 — 14 of the algorithm. Here we pick a random
Caussian vector w and set yUt") = (I — QQ")Aw where Q is the updated matrix at the j-th

iteration. This of course implies that yU*") € R ((I - (_)(_)*)A) =R <(I — Q(j)(Q(j))*)A>. We
now prove the following claim by induction, which allows us to make sense of the while loop
stopping criterion.

Lemma 2.2. At each iteration j > 1 we have that :
2) yU+D G+ ) e R <(| — QW QWYY A)

Proof. We proceed by induction. First, note that the claim trivially holds for j = 0. Since Q(©) =
we have to check the claim that 41, ... 4" € R(A), which holds by line 2 of Algorithm H. Notice
that the claim holds also for j = 1 since on line 13, we have:

(%) @) — g™ 4@y = O — (W (MY @ = (1 — QW(QM)*)y® = (I — QW(QM)*) Aw®
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Suppose j > 1 and
y @ YUt ) e ) <(| _ Q(jfl)(Q(jfl))*)A)

We would like to show that this implies that (2) holds. By assumption, prior to line 13 of the
algorithm (the for loop update), we have that for every i = (j + 1), (j +2),...,(j +r —1),

y — (. _ Q(J'*l)(Q(jfl))*) Ap
for some vector () by the recursive assumption. The update on line 13 gives:
@) — q)(qW), y@) =y — qU) (g0 y®
Ap® — g (gy* <| _ Q(j—n(Q(a’—m)*) Apl)
Ap) — qt) (q(j))*Au(i)

yi =

where we have used that (q(j))*Q(jfl) = 0 and that QY) = [Q(jfl), q)], so that:

. S - , QU . e N
QW (QW)* = [QU=Y q)] {( (q(j))*) = QU=Y(QUM)* 4+ qU)(gqV))
Thus, after the update, (projecting the new y() away from previously discovered elements of the
range of A), the vectors remain in the range of (I - Q(j)(Q(j))*> A. O

Given, Lemma 2.2, the whole algorithm now makes sense. The algorithm continues until all
of the y® for ¢ = j + 1,5 +2,...,5 + r become small in norm. At the point all these be-

come small, since we have shown all the y) € R ((I - Q(j)(Q(j))*)A), it must be the case that
((I — Q(j)(Q(j))*)A) p® =~ 0 for some set of vectors u(?. Given r is large enough, this implies

with high probability that ||(I — QY (QY)*)A| ~ 0 which means that A ~ Q¥)(QVY)*)A and we
have constructed the desired Q which captures much of the range of A. Of course, the result is
probabalistic. We could be really unlucky and it could simply be the case that the vectors u(i)
all have small norm, but this chance decreases rapidly if the number of vectors sampled r is large
enough (e.g. r = 10).

2.2. Algorithms 2 and 3. In contrast to Algorithm H in Figure 1, it is possible to construct
an algorithm such that on output, given ¢ > 0, we have that (1) holds. This is an important
improvement over Algorithm H, where on output, the norm in (1) is guaranteed to be small
only with a given probability. Another improvement, is the ability, in Algorithm 2, to block
computations, updating Q with a block of new vectors in a time, instead of using a single vector.
The two algorithms we will discuss are presented side by side below in Figure 2.2 taken from
[2]. The first being the single vector version and the second being the blocked method. For both
methods, on exit, we have that (1) holds. Let us first analyze the simpler single vector method.

Lemma 2.3. At the end of iteration j of Algorithm 1, we have:

AV = (1-Q;Q)A and B; =QJA
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Proof. The results can be established by induction. Notice that after the first iteration, q; € R(A),
Qi = [a3], B1 = [bi] = [qjA] = QJA. Next, since [|q;|| = 1, we have that (I — q;q})aq; =
aq; — aq; = 0, which implies that (I — q]-q;‘f) 1 R(q;) and that q; L q; for i # j. In particular,
dy L qy, so after the second iteration,

A® = A — q,q;A1) = AW — q,q5(A — q;q7) = (1 - q,a)A = (1 - Q:Q})A.
Let us assume that AV) = (- QjQ;f)A. It follows that:

AU = AV —qq ) af ) AY = (1= qg ) al))AY) = (- aga)0) (- Q;Q)A
= (- Q]Q ]+1)Q(]+1)) =(I- Q]+1QJ+1)

Similarly, if we assume B; = Qj A, then we have:

v L(j+1)A(]) a0 = Q]Q ) qa(nA +1) ey

0

Notice that we quit Algorithms 1 and 2 precisely when || AY)|| < € is small, so since we have shown
that AW = (1— Q;Q;)A, we have on exit that (1) holds.

Algorithm 1 function [Q, B] = randbQB(A, ¢, b)
(1) Qo=[iBo=[]iA=A;;j=0; 1) A®—Aa

(2)  while |[AY]| > ¢ (2) fori=1,23,...

(3) J=g+l v (3) Q, = randn(n,b)

(4) Pick a unit_ vector q; € ran(AU~Y), (4) Q; = qr(AQ;, 0)

(5) bj = q;AUY @) Q: = qr(Q; - Y17} Q,Q;Q:,0)
(6) Q; = [Qé_.ilqj] (5) Biv: Q:A'(Fi)

@) B, = { {,j } (6) A = AG-D _ Q;B;

(8) AW — AG-1) _ q;b; (7) if |A?|| < ¢ then stop

(9)  end while (8)  end for

10) k=7 (9) SetQ=[Q: - Qi and B = [B] - BJ".

FI1GURE 2. Algorithms 1 and 2.

Next, we discuss the block algorithm on the right of Figure 2.2. Note that in the blocked scheme
on the right, line (4') is not necessary in exact arithmetic, it is simply a reorthogonalization
step. Let us define: @z = [Ql, QQ, N Ql], Ez = [ T, B;, ey Br]*, and ?z = A[Ql, . ,QZ] =
[AQ;,...,AQ;] = [Yq,...,Y;]. Let us now make an important assumption which we later prove:
the orthonormality of the columns of Q;. This implies that Q} Q; = 0 when ¢ # j. Notice also an
important relation for A®) which we will use:

A(z):Az 1)_QZB_A21 QQAZIZ(I_QQ*)
Lemma 2.4. In exact arithmetic the following relations hold for the blocked algorithm.:

AD=A—-Q,QA and B;=QA
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Proof. In each case we use the orthonormality of Q; and repeared substitution via the recursive
relations for A®) and B,. For the first equation:
AY = (1-QQ)HATY =(1-QQ)) (1-Qi-1Q; ) Al
= (1-QQ; —Qi1Q; , - - QIQ)) A® = A1 - Q,Q))

For the second equation:

B, = QAU = Q! (1-Qi1Q; ) A2 — QA2 = ... = Q:AD) = QA

7

It follows that:
Qj QA B}
QA=[Qi....QA=|: [A=]| : |=]:
Q; QA B!

I
we]]

0

Next, we prove a more general lemma concerning the algorithm. We first describe some construc-
tions useful for the proof. We will use the matrix

P, = Q:Q;, as the orthogonal projection onto the range of ¥; = A[Q4,..., ] =[Y1,...,Y;].
k

k=1
Notice that the P; is constructed from the standard orthogonal matrix projection formula in linear

algebra: P = M(MTM)~!M”. Given Y, for 1 < k < i, if we take [Qg, Ry] = ¢r(Yy) then plugging
in the factorization for M = Q;R; we obtain

Pir) = QrRy ((kaRK)T(QkRk))71 (QsRy)T = Q1QF

(2
We get P; = Z P (i) Since P; is a projection matrix, it satisfies the following properties:
k=1

P:=P, Px=xforxeR(Y;), P’=P

7 3

We will also make use of the following lemma:

Lemma 2.5. Given, P; = Z Q:Q; and if Q; = [Qu, ..., Q] has orthonormal columns, then the
k=1
following holds:

R(P); = R (Z omz) = > R@QQ}) = Y R(Q) = R(Qi..... Qx])
k=1

k=1 k=1

We can now state and prove the following lemma. In it, we will prove that Q; has orthonormal
columns, so all of the above results will hold and be used in the proof of the other parts of the
lemma:

Lemma 2.6. For the blocked rand@QB algorithm presented above, the following holds:

e () Q; =[Qu,..., Q] has orthonormal columns
o (b)) A = (1—P)A
e () R([Q1,...,Qi]) = R([AQy,. .., AQ;])
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Proof. The fact the all claims hold for ¢ = 1 can be verified directly from the algorithm statements.
We proceed by induction. Let us suppose all claims hold up to (i—1). Let’s begin with (a) and (b).
We assume that: Q;_; = [Qu, ..., Q;_1] has orthonormal columns and that A = (1= P;_1)A.
We like to show that the same holds true for Q; and that A®) = (I—P;)A. Since Q; = ¢r(AC~1Q,),
it follows that Q; has orthonormal columns and that:
R(Q;) = RACIQ) C RACD) CR(I—Pi_1) = R(Pi_1)* =R([Q1, ..., Qi—1])*
Hence, it immediately follows that since R(Q;) € R([Q1,...,Q;—1])*, that Q;Q; = 0 for i # j
and so (a) is established. For part (b), we repeatedly substitute the recursive assumption:
AD = (1-QQ)A™ =(1-QQ;)(1-P;i_1)A
= (1-QiQ; —Pi-1 +QiQ;P;i-1))A=(1-Q;Q; — P;_1)A

i—1

= (1-QQ; - ) _QQj)A=(1-> Q:Q;)A=(1-P)A
k=1 =
By induction, this establishes (b).

To establish (c), we must show that
R(Q1,.-.,Q;]) CR(AQq,...,AQ;) and R(AQi,...,AQ;) CR([Q1,...,Qs))
We recall that AU~ = (1-P;_;)A and Q; = ¢r(AC~YQ;). Let us assume (induction assumption)
that R([Q1,...,Qi—1]) = R([AQq,...,AQ;_4]). It follows that:
RQ) = R(ACDR) =R((I - Pi_1)A;) = R(AQ; — Pi_1AQ))
C R(AQ;) +R(P;i—1AR;) C R(AQ;) + R(Pi—1) = R(AR;) + R([Q1, .- ., Qi—1])

Thus, we have R(Q;) C R(AQ;) + R([Q1,...,Q;_1]) and we apply this below:

R(Q1,---,Qi]) = R(Q1,..-,Qi-1]) + R(Q:)
C R(Q1,---,Qi1]) + R(AQ;) + R([Q1,---,Qi—1]) = R([Q1, ..., Qi—1]) + R(AL;)
= R([AQl,...,AQi_l])+R(AQ ) = R([AQy,...,AQ;])

This shows that R([Q1,...,Q;]) € R([AR4,...,AR;]). To complete the proof of (c) we show the

other direction. We must only show that R(AQ) € R(]Q1,...,Q;]). Let z € R(AQ;) which
implies that z = AQ;x. Then:

z = (1-Pi1 +P_)AQx = (I - P;_) ) AQ;x + P, _1AQ;x = AU"DQ;x + P, ;AQ;x
C R(AUDQ;) + R(P;_1AQ;) C R(Q:) + R(Pi-1) C R([Qy, ..., Qi)

where we have used Lemma 2.5. O

2.3. Power sampling scheme. A slight modification which gives noticeably better results in
practice is the power iteration. Here, we form Y a bit differently, via Y = (AA*)7AQ with
g > 1 (when ¢ = 0, we recover the original method). Note that A and (AA*)?A have the same
eigenvectors and related eigenvalues. Plugging in the SVD, A = UXV" we have:

AA* = UX’U* — (AA")? = UX?U*Uz?U* = ux‘u*

— (AA*)? = UX?9U*

— (AA*)?A = UZ2U*UZV* = UX2tiy*
When A is such that its trailing singular values decay slowly, the matrix (AA*)?A has much more
rapid decay of singular values. This approach results (in expectation, see section 10.4 HMT) a

smaller value of ||(I — QQ*)A|| in the case that A is such that its tail singular values are significant.
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That is, for matrices whose singular values decay very fast this is probably not necessary but
for many practical cases this gives significant improvement. This idea can be easily adapted to
Algorithms 1 and 2, in the sampling step. For example, we can replace line (4) of Algorithm 2
with the power sampling scheme.
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