
APPM 4/5720, 01-29-2016 Notes

1 Recall the RSVD

1. G = randn(n,k+p)

2. Y = AG, where A is m× n, G is n× (k + p)

3. [Q,∼,∼] = qr(Y ,0), where Y is m× (k + p)

4. B = Q∗A

5. [Uhat,D, V ]= svd(B,‘econ’)

6. U = QUhat, where Uhat is (k + p) × (k + p)

7. (Truncate)

2 Computational Costs

2.1 Environment 1: A fits in RAM

Traditional flop count is (sort of) a relevant measure. We make the following esti-
mates:

• Cost of matrix-matrix multiply of matrices of dimensions i, j, k is

T ≈ Cmmijk

C = AB, where C is i× k, A is i× j and B is j × k.

• Cost of QR/SVD Factorization of matrix of size i× j is

Tqr ≈ Cqrij min(i, j)

Tsvd ≈ Csvdij min(i, j)

Assume the number of extra samples p is small, and can be ignored. Then, the
cost of the steps of the RSVD are:

2. ∼ nk small so ignore!

3. Cmmmnk

4. Cqrmk2

5. Cmmmnk



6. Csvdnk
2

7. Cmmmk2

So Trsvd ≈ Cmm(2mnk+mk2) +Cqrmk2 +Csvdnk
2. The asymptotically dominant

term is mnk since k < min(m,n), so crudely Trsvd ∼ mnk.

2.2 Environment 2: A is dense and stored on a hard drive

A is stored “out of core.” Assume k is small enough that G, Y,Q,B, U, V,D all fit in
RAM. We have O(k(m + n)) RAM but not O(mn), so A does not fit.

In this case, the time required to read A from disk dominates. So a relevant
estimate would be

Trsvd ≈ 2 ∗ (cost of reading A) + Cmmmk2 + Cqrmk2 + Csvdnk
2

where the cost of reading A depends on the bandwidth of the machine. The CPU
will be idle most of the time as data is being moved for computation.

Note: The two reads come from

1. Y = AG

2. B = Q∗A

2.3 Environment 3: A and A∗ can rapidly be applied to a
vector or matrix

Let A be a m× n matrix. Let X1 be m× r and X2 be n× r. Suppose that the cost
of evaluating AX1 is ≈ C1r and A∗X2 is ≈ C2r.

In Environment 1, we had C1 = Cmmmn. If A is sparse, then C1 � Cmmmn. In
this case,

Trsvd ≈ (C1 + C2)k + Cmmmk2 + Cqrmk2 + Csvdnk
2.

Examples of Environment 3 include:

1. A is sparse

2. A has internal structure. For instance A is a convolution matrix:
b1 b2 b3 . . . bn
bn b1 b2 . . . bn−1

bn−1 bn b1 . . . bn−2
...

...
. . .

...
b2 b3 b4 . . . b1


Then A can be applied to a vector in O(n log n) operations using the Fast
Fourier Transform. y = F−1(FAF−1)Fx where F is the n× n discrete Fourier
Transform.

The “FFT” algorithm applies F or F−1 in O(n log n) operations.



3. Applying A could consist of solving a PDE using a spare solver such as Multigrid
methods.


