
Course notes APPM 5720 — P.G. Martinsson January 27, 2016

Matrix factorizations and low rank approximation
Recall the two-stage approach to computing the approximate SVD of a given m× n matrix A of rank k: We seek
U,V orthonormal and D diagonal, k × k such that A ≈ UDV∗.

Stage A: Find an m× k matrix Q with orthonormal columns such that A ≈ QQ∗A.
Stabe B: Compute the matrix-matrix product B = Q∗A, the full SVD B = ÛDV∗, and the matrix-matrix

product U = QÛ.

We then have that
A ≈ QQ∗A = QB = QÛDV∗ = UDV∗.

1. A RANDOMIZED ALGORITHM FOR “STAGE A”

For now, assume that A is exactly rank k. (This is a mathematical assumption. In finite precision arithmetic, a
matrix is of course never exactly rank deficient, but mathematically, it is fine.)

The “range finder” approach proceeds as follows.

(1) Draw a Gaussian random vector g1 ∈ Rn, so that each entry of g1 is drawn independently from a normal-
ized Gaussian distribution. The idea is to sample directions uniformly (the length is more-or-less irrele-
vant), and drawing Gaussian random vectors is one way of achieving this result.

Compute the sample vector y1 = Ag1 ∈ ran(A).
(2) For i = 2, ..., k, draw a Gaussian random vector gi ∈ Rn and compute the sample vector yi = Agi ∈

ran(A).
(3) Apply Gram-Schmidt to {yj}kj=1 to obtain the orthonormal basis {qj}kj=1 of ran(A). We can arrange the

qj into a matrix Q = [q1 q2 · · · qk]. Note that one can prove that {yj}kj=1 is linearly independent with
probability 1, which shows that the Gram-Schmidt procedure will succeed.

There are some concerns with this idealized approach.

(1) Even though we are guaranteed that {yj}kj=1 is linearly independent with probability 1, in finite precision
arithmetic the set of vectors {yj}kj=1 may be close to linearly dependent. Thus, the Gram-Schmidt proce-
dure must be implemented carefully (e.g. Gram-Schmidt with reorthogonalization, Householder reflectors
[used by LAPACK, MATLAB]).

(2) Typically A isn’t exactly rank k. The singular values σk+1, σk+2, ... will instead be small but non-zero.
In the ideal case, ran(Q) = span{uj}kj=1, where uj is the jth left singular vector of A; this provides the
optimal (in the induced 2-norm) rank k approximation to A. The effect of small, but nonzero, singular
values σk+1, σk+2, ... is to “pollute” the sample vectors {yj}kj=1 by pushing them outside the span of the
dominant k left singular vectors, {uj}kj=1.

Fortunately, there is a simple fix: oversampling. Pick a small integer p that specifies the amount of over-
sampling (e.g. p = 5 works well for a number of cases). Draw k + p sample vectors instead of k, and
perform the same procedure above to get {qj}

k+p
j=1 . With high probability, the dominant k left singular

vectors will be “almost contained” in span{qj}
k+p
j=1 .

Remark 1. The k + p samples can be computed all at once. We can arrange the computation as a matrix-matrix
product:

Y =
[
y1 y2 · · · yk+p

]
= A

[
g1 g2 · · · gk+p

]
= AG.

This formulation parallelizes well on a variety of platforms.
1



Course notes APPM 5720 — P.G. Martinsson January 27, 2016

2. THE RANDOMIZED SVD (RSVD)

In this section we combine the methods of the previous section with “Stage B”, resulting in fast, randomized algo-
rithm for computing an approximate SVD. We present first the algorithm and second a MATLAB implementation.

Algorithm 1 Randomized SVD (RSVD)
1: Input An m× n matrix A, a rank k, and an oversampling parameter p.
2: Output Matrices U,D,V such that A ≈ UDV∗, U,V are orthonormal, and D is diagonal and k × k.
3: procedure STAGE A
4: Draw a Gaussian random matrix G of size n× (k + p).
5: Compute the sampling matrix Y = AG.
6: Orthonormalize the columns of Y to compute the ON m× (k + p) basis matrix Q s.t. ran(Q) = ran(Y).
7: end procedure
8: procedure STAGE B
9: Compute the matrix-matrix product B = Q∗A.

10: Compute the full SVD of B = ÛDV∗.
11: Compute the matrix-matrix product U = QÛ.
12: If a rank-k approximation is desired, drop the p extra samples from U,D,V.
13: end procedure

Note that at the end of Stage B, we (optionally) drop the p extra samples. If we do not drop the p extra samples,
we’ll get a slightly better approximation to A. Note, however, that we typically will have σk+1, σk+2, ... small, so
that the approximation will not be significantly better than the rank-k approximation formed by dropping the extra
p samples.

LISTING 1. Randomized SVD
function [U,D,V] = rsvd(A, k, p)
[m,n] = size(A);

% Stage A
G = randn(n, k+p);
Y = A*G;
[Q,˜,˜] = qr(Y,0); % Defaults to CPQR

% 0 is a flag to produce an "economy size" decomp.

% Stage B
B = Q’*A;
[Uhat,D,V] = svd(B, ’econ’);
U = Q*Uhat;
U = U(:,1:k); D = D(1:k,1:k); V = V(:,1:k); % optionally drop extra p samples

end

2



Course notes APPM 5720 — P.G. Martinsson January 27, 2016

REFERENCES

3


