
Course notes APPM 5720 — P.G. Martinsson February 3, 2016

Approximating Large Matrix A

1. Importance and Motivation. Using SVD we can get the approximation of A in the following way.

Let A be our matrix, defined as a set of column vectors. Establish G as a set of Gaussian random row vectors.
Define their product Y .

Y = AG

=
[
a1 . . . an

]  g1
...
gn


Now derive Q from QR decomposition, Q = qr(Y, 0). We can define B = Q∗A, with decomposition B =

ÛDV ∗, and we claim that

QQ∗A ≈ A
QB ≈ A

Q− svd(B) ≈ A

This approximation of A can be widely used in a ton of applications, not just SVD! Therefore it’s important to
understand its derivation and usefulness.

2. Properties and Definition of Q. We have shown that QQ∗A ≈ A, and we can examine the properties of QQ∗.
We claim that QQ∗ is actually a projector onto the range of Q.

To be a projector, the following properties must be satisfied.

1. P̂ 2 = P̂

2. P̂~v = ~v for some vector ~v.

These can be trivially shown using the definition of P̂ , which implies the following two statements are equivalent.

• range(A) ⊆ range(Q)

• A = QQ∗A.

In a sense, Q captures the range of A.

We can see that these properties hold as long as QQ∗A︸︷︷︸
B

≈ A and B is smaller than A.

3. Determining Q. We’ve defined Q to be the result of QR decomposition on our Y matrix (our random sampling
of A), but we have to be careful how we define that random sampling.

Y = A G
m× n n× (k + p)

Much of the algorithm is now determined by k + p.

• If k + p is small, A isn’t sampled enough and our approximation is no longer accurate.

• If k + p is large, B grows large and we’ve lost the reason why we’re trying to approximate A in the first
place.

So how do we determine Q?
1



Course notes APPM 5720 — P.G. Martinsson February 3, 2016

4. Adaptive Range Finder. 1

Given m× n matrix A, a tolerance ε, and an integer r, find Q such that

‖(I −QQ∗)A‖ ≤ ε

holds with probability at least 1−min {m,n} 10−r.

Data: A, ε, r
Result: Q
Draw standard Gaussian vectors w(1), . . . , w(r) of length n.
for i = 1, 2, . . . , r do

y(i) = Aw(i)

end
j = 0
Q(0) = []; /* the m× 0 empty matrix */

while max
{
‖y(j+1)‖, ‖y(j+2)‖, . . . ‖y(j+r)‖

}
> ε/10

√
2/π do

j += 1
Overwrite y(j) =

(
I −Q(j−1)

(
Q(j−1)

)∗)
y(j)

q(j) = y(j)/‖y(j)‖
Q(j) =

[
Q(j−1)q(j)

]
Draw a standard Gaussian Vector w(j+r) of length n.
y(j+r) =

(
I −Q(j−1)

(
Q(j−1)

)∗)
Aw(j+r)

for i = (j + 1) : (j + r − 1) do
Overwrite y(i) = y(i) − q(j)〈q(j), y(i)〉

end
end
Q = Q(j)

1Algorithm 4.2 in Halko, Martinsson, Tropp, Page 25, http://arxiv.org/pdf/0909.4061.pdf
2

http://arxiv.org/pdf/0909.4061.pdf

	1. Importance and Motivation
	2. Properties and Definition of Q
	3. Determining Q
	4. Adaptive Range Finder

