Approximating Large Matrix A

1. Importance and Motivation. Using SVD we can get the approximation of A in the following way. Let A be our matrix, defined as a set of column vectors. Establish G as a set of Gaussian random row vectors. Define their product Y.

$$ Y = AG $$
$$ = \begin{bmatrix} a_1 & \ldots & a_n \end{bmatrix} \begin{bmatrix} g_1 \\ \vdots \\ g_n \end{bmatrix} $$

Now derive Q from QR decomposition, $Q = qr(Y, 0)$. We can define $B = Q^*A$, with decomposition $B = \tilde{U}D\tilde{V}^*$, and we claim that

$$ QQ^*A \approx A $$
$$ QB \approx A $$
$$ Q - svd(B) \approx A $$

This approximation of A can be widely used in a ton of applications, not just SVD! Therefore it’s important to understand its derivation and usefulness.

2. Properties and Definition of Q. We have shown that $QQ^*A \approx A$, and we can examine the properties of QQ^*. We claim that QQ^* is actually a projector onto the range of Q.

To be a projector, the following properties must be satisfied.

1. $\hat{P}^2 = \hat{P}$
2. $\hat{P}\vec{v} = \vec{v}$ for some vector \vec{v}.

These can be trivially shown using the definition of \hat{P}, which implies the following two statements are equivalent.

- range(A) \subseteq range(Q)
- $A = QQ^*A$.

In a sense, Q captures the range of A.

We can see that these properties hold as long as $QQ^*A \approx A$ and B is smaller than A.

3. Determining Q. We’ve defined Q to be the result of QR decomposition on our Y matrix (our random sampling of A), but we have to be careful how we define that random sampling.

$$ Y = \begin{bmatrix} A \\ m \times n \end{bmatrix} \begin{bmatrix} G \\ n \times (k+p) \end{bmatrix} $$

Much of the algorithm is now determined by $k + p$.

- If $k + p$ is small, A isn’t sampled enough and our approximation is no longer accurate.
- If $k + p$ is large, B grows large and we’ve lost the reason why we’re trying to approximate A in the first place.

So how do we determine Q?

Given \(m \times n \) matrix \(A \), a tolerance \(\epsilon \), and an integer \(r \), find \(Q \) such that

\[
\|(I - QQ^*) A\| \leq \epsilon
\]

holds with probability at least \(1 - \min\{m, n\} 10^{-r} \).

Data: \(A, \epsilon, r \)

Result: \(Q \)

Draw standard Gaussian vectors \(w^{(1)}, \ldots, w^{(r)} \) of length \(n \).

for \(i = 1, 2, \ldots, r \) do
 \[
y^{(i)} = Aw^{(i)}
\]
end

\(j = 0 \)

\(Q^{(0)} = [] \); /* the \(m \times 0 \) empty matrix */

while \(\max\{\|y^{(j+1)}\|, \|y^{(j+2)}\|, \ldots, \|y^{(j+r)}\|\} > \epsilon/10\sqrt{2/\pi} \) do
 \(j += 1 \)
 Overwrite \(y^{(j)} = (I - Q^{(j-1)}(Q^{(j-1)})^*) y^{(j)} \)
 \(q^{(j)} = y^{(j)}/\|y^{(j)}\| \)
 \(Q^{(j)} = [Q^{(j-1)}q^{(j)}] \)
 Draw a standard Gaussian Vector \(w^{(j+r)} \) of length \(n \).
 \(y^{(j+r)} = (I - Q^{(j-1)}(Q^{(j-1)})^*) Aw^{(j+r)} \)
 for \(i = (j + 1) : (j + r - 1) \) do
 Overwrite \(y^{(i)} = y^{(i)} - q^{(j)} \langle q^{(j)}, y^{(i)} \rangle \)
 end
end

\(Q = Q^{(j)} \)