1. Review: The Randomized "Power Method"

This section is a review from class on 02/12/2016. Let A be an $m \times n$ matrix. Further, define k to be our target rank and p the oversampling parameter. For notational convenience, let $l = k + p$. We are seeking an approximate SVD of A: $A \approx UDV^*$. Recall the familiar process:

- Draw random matrix $G = \text{randn}(n,l)$
- Create sampling matrix $Y = AG$
- Form $Q = \text{orth}(Y)$
- Let $B = Q^*A$
- Calculate an SVD of B, $B = \hat{U}DV^*$
- Finally, $U = Q\hat{U}$

One can prove, for $q = 0$ (the number of power iterations) and C a constant:

$$\mathbb{E}||A - UDV^*|| = \mathbb{E}||A - QQ^*A|| \leq C(\sum_{j > k} \sigma_j^2)^{\frac{1}{2}} \leq C(\sqrt{n} - k)\sigma_{k+1}$$

With the worst case occurring when no decay is present in the singular values past σ_{k+1}. We will now look at how these bounds change when we increment q. For $q > 0$ we have:

$$\mathbb{E}||A - QQ^*A|| \leq C(\sqrt{n} - k)^{\frac{1}{2q+1}}\sigma_{k+1}$$

From these bounds, we infer that the usage of power iterations can be advantageous in the reduction of expected error. Let’s take a closer look at this method.

2. Power Method

For simplicity, assume that A is Hermitian ($A = A^*$, In the case where A is not Hermitian, we can adapt the process to accommodate.) Consider the eigendecomposition of A: $A = VDV^*$ where V contains the eigenvectors of A and D is diagonal whose elements are the ordered eigenvalues of A ($|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$). With this, we can compute different integer powers of our matrix A:

2.1. Powers of A.

$$A^2 = AA = VDV^*VDV^* = VDIDV^* = VD^2V^*$$
$$A^3 = (A^2)A = (VD^2V^*)VDV^* = VD^2IV^* = VD^3V^*$$
$$\vdots$$
$$A^q = VD^qV^*$$

And so, if $\{\lambda, v\}$ is an eigenpair of A then $\{\lambda^q, v\}$ is an eigenpair of A^q. Suppose we seek to approximate the dominant eigenvector of A, say v_1.

2.2. Classical Power Iterations.

- Draw starting vector $g \in \mathbb{R}^n$. A common choice is to choose g from a Gaussian distribution, but this is not a requirement.
Let:
\[y_1 = A g \]
\[y_2 = A y_1 = A^2 g \]
\[y_3 = A y_2 = A^3 g \]
\[y_4 = A y_3 = A^4 g \]
\[y_5 = A y_4 = A^5 g \]
\[\vdots \]

This says that \(y_n \) will get closer to alignment with \(v_1 \) as \(n \) is incremented. To see why it works, write \(g = g_1 v_1 + g_2 v_2 + \ldots + g_n v_n \) (works since \(\{v_i\}_{i=1}^n \) forms an orthonormal basis). Then \(y_q = A^q g = g_1 \lambda_1^q v_1 + g_2 \lambda_2^q v_2 + \ldots + g_n \lambda_n^q v_n \). If \(|\lambda_1| > |\lambda_2| \), the first term, \(g_1 \lambda_1^q v_1 \), will dominate as \(q \) increases (which of course can go wrong if \(g_1 = 0 \)).

Theorem 1. Suppose \(\lambda_1 > 0 \) and \(|\lambda_1| > |\lambda_2| \), then \(\frac{y_q}{||y_q||} \rightarrow \pm v_1 \) as \(q \rightarrow \infty \).

The proof of this is left as an exercise for the reader. Upon closer inspection of this process, it is clear there are some drawbacks. Used as a numerical method, it can be rather primitive.

2.3. Drawbacks and Remedies.

- If \(|\lambda_1| \approx |\lambda_2| \) the rate of convergence can be quite slow
- A needs to be accessed many different times
- An unlucky draw of \(g \) can yield a small \(g_1 v_1 \) which will result in a large number of iterations required.
- Quite inefficient if you desire more than one eigenvector

These concerns can be ameliorated by choosing multiple starting vectors.

- Draw \(l \) starting vectors \(g_{i=1}^l \in \mathbb{R}^n \). Let \(G = [g_1, g_2, \ldots, g_l] \).
- Let:
 \[Y_1 = AG \]
 \[Y_2 = AY_1 = A^2 G \]
 \[Y_3 = AY_2 = A^3 G \]
 \[Y_4 = AY_3 = A^4 G \]
 \[Y_5 = AY_4 = A^5 G = [A^3 q_1, A^3 q_2, \ldots, A^3 q_l] \]
 \[\vdots \]

When performing this, one needs to be quite careful, round-off errors can hurt you!
2.4. Example 1: Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{bmatrix}$ where $1 > \alpha > \beta \geq 0$

The eigenpairs of A are easily calculated as:

$\{\lambda_1, v_1\} = \{1, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\}$, $\{\lambda_2, v_2\} = \{\alpha, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\}$, $\{\lambda_3, v_3\} = \{\beta, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\}$

Let us try to calculate v_1 and v_2 via the proposed remedy to our drawbacks. We run the scheme and find:

$Y_q = A^q G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha^q & 0 \\ 0 & 0 & \beta^q \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \\ g_{31} & g_{32} \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} \\ \alpha^q g_{21} & \alpha^q g_{22} \\ \beta^q g_{31} & \beta^q g_{32} \end{bmatrix}$

In precise arithmetic, there are no issues, we are successful! However, in floating point arithmetic, we are far from successful. Recall, $|\alpha|, |\beta|$ are both smaller than 1, suppose q is large enough to force $\alpha^q < \epsilon_{machine} \approx 10^{-16}$ (say $\alpha = 0.1$, $q = 20$). In this case, since $\beta < \alpha$, we have:

$Y_q = \begin{bmatrix} g_{11} & g_{12} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

This successfully captures v_1 but yields no information for v_2. Once, again, this can be fixed! To do so, we must orthonormalize between each iteration.

- Draw l starting vectors $g_{i=1}^l \in \mathbb{R}^n$. Let $G = [g_1, g_2, \ldots, g_l]$.
- Let:

 $Y_1 = AG$
 $Q_1 = \text{orth}(Y_1)$

 $Y_2 = AQ_1$
 $Q_2 = \text{orth}(Y_2)$

 $Y_3 = AQ_2$
 $Q_3 = \text{orth}(Y_3)$

 \vdots

We end this lecture with a theorem:

Theorem 2. $\text{Col}(Y_q) = \text{Col}(A^q G)$ in exact arithmetic

The proof of which is too small to be contained within the margin...(possibly next lecture?)