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Johnson-Lindenstrauss Theory

Let Q = {x;}", be a set of points in R?. Think of d as being large, so that tree-based methods may not perform
well. Suppose we are interested in analyzing the geometry of the set (). For example, we could be interested in
nearest-neighbors search, finding low-dimensional structure, etc.
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It is natural to look for a map f : R¢ — R* that maps the points to R¥, where k < d. Desirable properties of f
include:

nice continuity (J-L gives a linear, Lipschitz map)
We would like k to be reasonably small (J-L gives k£ ~ logn independent of d)
We want to approximately preserve pairwise distances:

i — ajll = || f (i) = f(xy)l| Vi, x5 € Q.
We want to approximately preserve angles:

(x; — Xj, Ty — xj> ~ (f(x;) — f(xj)a f(xp) - f(xj» Vi, zp, x5 € Q.
f(xp)

x; f(x5)
The Johnson-Lindenstrauss theorem asserts that there exists a linear map f and that image dimension k will scale

as log n with no dependence on the original dimension d. From a practical perspective, we often choose f as a
random projection (e.g. a “short fat matrix”).

1. BRIEF REVIEW OF BASIC PROBABILITY

Let us briefly review basic probability and introduce our notation. Let X € R be a random variable with probability
density function p. The mean of X is

The variance of X is
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Example 1. Let X ~ A/(0, 1) be sampled from the standard normal distribution. We have p(z) = (2r)~/2e"/2.
Using a symmetry argument,
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With a bit more work, one can show

o’ = / xQLef’”Q/de =1.
R

Example 2. Let

1 la b
A=l d
be a 2 x 2 random matrix where the entries a, b, ¢, d are independent and have mean 0 and variance 1. Fix x € R?;

note that x is not a random variable, but an arbitrary vector. Set y = Ax; note that y is a random variable. Let’s
compute E[||y||?]. We have

1 1
lol® = i + 93 = 5 (ax1 + baa)* + 5 (cas + dra)”.

Observe that y; is independent from s, since x is fixed and the entries of A are independent. Expectation is linear,
SO wWe may write

E [llyl*] = Elyi] + Ely3].

Observe that all the entries of A are independent with mean 0 and variance 1. Therefore we have

1 1 1
E[y?] = §E[a2m% + 2abxyx9 + V23] = ix%E[aQ] + z1x9E[ab] + ixiE[bQ]

1 1 1 1
= ix% + z122E[a] E[D] + 5;3% = 5;3% +0+ ix%
1
= Sl
Analogously, we know E[y3] = |z(|?/2, and so we have E[||y||?] = ||=||>. In other words, the expected value of

lly||? is ||z||?, so the random matrix A preserves the squared 2-norm in expected value. Note that we do not yet
know anything about the variance of ||y||%.

The above example generalizes to the case of a random & X d matrix.

Theorem 1. Let A be a k X d random matrix with entries that are independent and have mean 0 and variance 1.

Given x € RY, sety = ﬁAm. Then E[||y|%] = ||z|%

Proof. Due to linearity,

k

E(llyl*] = > _Ely].

i=1

Following the example, we have
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d d
1 1
E[yzz] = EE § Q5T = EE E Q5T 5 Ty
j=1 J:p=1

Since the entries a;; are independent, mean 0, and variance 1, we know E[aijaip] = 0;p, wWhere 9§y, is the Kronecker
delta (6, = 1if j = p and 0 otherwise). Using this to simplify the double sum, we have

1

d d
1 1
E[yi]2 = EE Za?j%z ZQC?E[@ZQ]} = %HQUHQ
j=1 j=1

Combining everything, we have the desired result. U

x|

There are many matrices that satisfy the conditions of Theorem 1. For instance, if the entries a;; are sampled
independently from NN (0, 1), or £1 with probability 1/2 (Bernoulli variables), then the conditions are satisfied.
Again note that we know the expected value of ||y||?, but nothing about the variance (which could be unreasonably
large).

Theorem 2. Let A be a k X d random matrix with entries sampled independently from N(0,1). Fix e € (0,1/2).
Then

A=) l® <yl < (1+ €|zl
with probability at least 1 — 2e— (€ —€*)k/4,

Proof. Set z = %y Then

R

vk 1 <
Z; Qyi = — Zaijxj.
27 el

Notice that z; is a Gaussian random variable, since it is a linear combination of Gaussian random variables. We
easily compute

d
1
E[Zz] = m Z@E[alj] = 0.
j=1

In the proof of Theorem 1, we showed [E[z;]? = 1. Thus, since Gaussian random variables are completely deter-
mined by their mean and (co)variance, each z; ~ N(0, 1), and they are all independent.

The proof will continue next time. After some algebra, we find

k
Prob [||y[|* > (1 + €)||z||*] = Prob [Z 22> (1+ ek
i=1




