Diffusion Geometry Review

Given points \(S = \{x_i\}_{i=1}^n \) in \(\mathbb{R}^D \) we seek some parametrization \(\phi : S \to \mathbb{R}^k \) (\(k \) should be small) that reveals the geometry (Low dimension structure, clustering).

Introduce a “kernel” \(k(x,y) = \exp(-\frac{1}{\epsilon^2} ||x-y||^2) \) where \(\epsilon \) is a tuning parameter. Let \(L \) be the \(n \times n \) matrix with entries \(L(i,j) = k(x_i,x_j) \). Let \(D(i,i) = \sum_{j=1}^n L(i,j) \). Set \(M = LD^{-1} \) then \(M \) is a set of transition probabilities for a random walk on \(S \).

For \(t = 1, 2, 3, \ldots \) we are interested in the matrix \(M^t \) of transition probabilities for \(t \) steps of the random walk (\(t \) is another tuning parameter). Recall symmetrization “trick”: set

\[
\tilde{M} = D^{-\frac{1}{2}}MD^{\frac{1}{2}} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}.
\]

So \(\tilde{M} \) is symmetric. Compute EVD of \(\tilde{M} \). \(\tilde{M} = V \Lambda V^* \). Then

\[
M^t = D^{\frac{1}{2}} \tilde{M}^t D^{-\frac{1}{2}} = D^{\frac{1}{2}} V \Lambda^t V^* D^{-\frac{1}{2}}.
\]

Assume the evals decaly, and pick a truncation parameter \(k \). Then the (truncated) diffusion distance is

\[
d_t(i,j) = \left(\sum_{p=1}^k \lambda_p^{2k} |v_p(i) - v_p(j)|^2 \right)^{\frac{1}{2}}.
\]

So,

\[
\Phi : S \to \mathbb{R}^k
\]

\[
i \mapsto \begin{bmatrix}
\lambda_1 v_1(i) \\
\vdots \\
\lambda_k v_k(t)
\end{bmatrix} =: Z_i
\]

Connection to heat conduction. Let \(p \in \mathbb{R}^n \) be the vector of limiting probabilities \(p = \lim_{t \to \infty} M^t p_0 \). Recall \(Mp = p \Rightarrow LD^{-1}p = p \Rightarrow (LD^{-1} - I)p = 0 \Rightarrow (L - D)D^{-1}p = 0 \) where \((L - D) \) is graph Laplacian.

Ex. Square lattice in 2D. Consider heat conduction. Let \(u \in \mathbb{R}^n \) be the vector of temperatures.

\[
(u_w + u_e + u_n + u_s) - 4u_c = 0.
\]

Standard 5-point stencil

\[
L = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 4 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
D = \begin{bmatrix}
8 & & & & \\
& 8 & & & \\
& & 8 & & \\
& & & 8 & \\
& & & & 8
\end{bmatrix}
\]

and

\[
A = L - D = \begin{bmatrix}
8 & & & & \\
1 & 1 & -4 & 1 & 1 \\
& 8 & & & \\
& & 8 & & \\
& & & 8 &
\end{bmatrix}
\]

Graph Laplacian \(Au = 0 \). Heat conduction \(\frac{\partial u}{\partial t} = Au \), solution \(u = \exp(At)u_0 \) where \(\exp(At) \) is heat kernel and \(u_0 \) is initial value.

Recall \(n \) points \(\{x_i\}_{i=1}^n \) in \(\mathbb{R}^D \).

Computation issues: If \(n \) is large, e.g. \(10^3 \leq n \leq 10^9 \), \(D \) can be large! \(D = 2, 3, \ldots 10^3 \). Cost to assemble \(L \) is \(O(Dn^2) \). Cost to compute top \(k \) evens & evals of \(L \) is \(O(kn^2) \). This is prohibitive when \(n \) is large.
Observe that many entries of L are very close to 0. Let us modify the kernel function. Pick a truncation distance δ and set

$$k(x, y) = \begin{cases}
\exp\left(-\frac{1}{\epsilon^2} \|x - y\|^2\right), & \text{if } \|x - y\| \leq \delta, \\
0, & \text{if } \|x - y\| > \delta.
\end{cases}$$

This sparsifies L. On row i of L, the only non-zero entries $L(i, j)$ are the ones for which $\|x - y\| \leq \delta$. Then \tilde{M} is sparse, and we can use e.g. Lanczos to compute the top k evals & evecs.

Problem: Finding the nearest neighbors can be costly. If done naively, the cost is still Dn^2.

Solution - first try.

Say $D = 2$. Put down quad tree on domain. Assume points are distributed fairly uniformly. Cost to build the tree $\sim n$. Cost to search $\leq n$.

In 2D, the number of neighbors boxes $= 3^2 - 1 = 8$. In n-D, the number of neighbors boxes $= 3^n - 1$. This method scales abysmally with dimension.

Let us consider a non-uniform distribution. Build the tree adaptively. Split boxes only with “many” points in them. This still scales very badly with dimension. The search stage can get nasty.

“K-d trees”: A technique to make tree searches work well for non-uniform distributions and for “sort of” high dimensions.

“Binary tree”:

\[\text{\ldots} \]