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The Johnson-Lindenstrauss Theorem

The object of this lecture is to introduce and prove the Johnson-Lindenstrauss Theorem. This theorem proves
(under certain conditions) that a set of points in a high dimensional space can be embedded into a low dimensional
subspace so that distances are preserved.

1. PRELIMINARY RESULTS

We begin with a simple result from probability theory, which we state without proof.

Lemma 1. Let Z € X% and € € (0, 3). Then
P(Z > (1+¢)k) < e 1 (=),

and X ,
Pz < (1—e)k) < e al€),

The following theorem comes from the theory of random matrices. Heuristically, it gives the probability that
multiplying a vector by a random matrix preserves the vector’s norm.

Theorem 2. Let A be a k x d random matrix with i.i.d. entries a;; € N(0,1). Sety = ﬁAx so f: R — RF,

Fixe € (0,3). Then (1 — €)||z||*> < [ly[|* < (1 + €)||z||* with probability at least 1 — 21 (€ =),

Proof. Set Z = &y Then z; = HTlH Z?Zl ai;x;. Each variable z; is a linear combination of Gaussian random
variables. This tells us gives us three important pieces of information:

(1) z; is a Gaussian random variable.
(3) By Theorem 1 (from previous lecture), Var(z;) = ]E[z-z] =1.

(2

Combining these three facts, we see that z; € N (0, 1).

Next, observe that ||z||? = Z;.lzl 22, which implies that ||2]|? € x3.

Now, applying Lemma 1,
ENE
Iyl > 1+ ofel) =2 (1R > (14 g
=P(|l2]> > (1 + o) l«|*)
<e i@
Analogously,
_k(2_¢3
P(lyll* < (1 = e)llz[?) < em1l=)
Combining (4) and (5), we have the desired result.

()

g

There is also an alternative proof for Theorem 2 that highlights the utility of Gaussian distributions. This proof is
outlined below.

Proof. Lety = ﬁAw, and let H be a unitary map so that

[edl
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(One might recognize H as a Householder reflector.) We then have that y = ﬁAx = ﬁAH *Hx, due to the fact

that H is unitary. Define A = AH*. Using the fact that Gaussian distributions are rotationarily invariant, Aisa
Gaussian matrix as well (with a;; € N(0,1)).

Therefore,
] ]
1 0 1 X
L gl oo o oo
A =]
0 0
This implies that ||y||? = WH g||>, where g € x?. Once we have result, we can apply Lemma 1 to retrieve the

bounds stated in the theorem.

g

We are now prepared to state and prove the Johnson-Lindenstrauss Theorem.

2. THE JOHNSON-LINDENSTAUSS THEOREM

The Johnson-Lindenstrauss Theorem is especially useful for data analysis in large dimensions because it allows
us to project the data onto a low dimensional subspace while preserving the basic geometry of the data. What
follows is a statement about the existence of a low dimensional embedding. However, the proof of the theorem is
constructive, so provides a way to build such an embedding (see notes after the proof).

Theorem 3. (Johnson-Lindenstrauss): Let Q) be a collection of n points in R%. Let ¢ € (0, %) Pick an integer
k > % log(n). Then there exists a Lipschitz map f = R% — R¥ so that V u,v € Q:

(1= llu—v* < [If(w) = fF@I* < A+ e)lu—v]* ()

roof. Sety = f(x) = —=Ax where A is a k X d random matrix with a;; drawn independently from an )
P S \}EA here A is a k x d rand ix with a;; d ind dently f N(0,1

distribution. Theorem 2 shows that for any pair u,v € (@, the bound (%) holds with probability at least 1 —
k(2

2¢1(=<) There are @ unique pairs of points u, v. Use a simple union bound. Let F;; be the event that pair

{u;, u;} fails. Theorem 2 implies that P(F};) < ¢~ 1(~<") Therefore, the probability that no pair fails is

<1- > P(Fy)

distinct pairs

{ig}
<1-— n(n — 1)6_2(62_63)‘
- 2
If we use the k given by the theorem statement, then we see that there is nonzero probability that () holds. This
proves the existence of a low dimensional embedding that preserves distances. O

The following are some notes about this result:

(1) This proof provides a way to construct the map f. Namely, f could be a Gaussian random projection.
Statements of the theorem that incorporate a construction of f give a probability that f preserves distances.
As k is increased (above the necessary minimal value), the probability that a certain f preserves distances
goes to 1 exponentially fast.

(2) Using Gaussian random projections is in some sense optimal, but other distributions work as well. For
example, if the entires of A are drawn from Bournoulli distribution (the set {—1, 1}), then

1 1

—||Az|| < (1 +€¢)||z||, and —||Ax| > (1 —¢)|z
\/E” < (1+ el \/EH 1= (1= el
with probability bounded below by 1 — e (e

2_63)

2
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(3) It is known that the Johnson-Lindenstrauss result is sharp up to a factor of log (%) This implies that we

can build a set of points that require
O log(nz
e?log(¢)

dimensions to accurately represent the distances between the points.



