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The Johnson-Lindenstrauss Theorem
The object of this lecture is to introduce and prove the Johnson-Lindenstrauss Theorem. This theorem proves
(under certain conditions) that a set of points in a high dimensional space can be embedded into a low dimensional
subspace so that distances are preserved.

1. PRELIMINARY RESULTS

We begin with a simple result from probability theory, which we state without proof.

Lemma 1. Let Z ∈ χ2
k and ε ∈ (0, 12). Then

P(Z ≥ (1 + ε)k) ≤ e−
k
4
(ε2−ε3),

and
P(z ≤ (1− ε)k) ≤ e−

k
4
(ε2−ε3).

The following theorem comes from the theory of random matrices. Heuristically, it gives the probability that
multiplying a vector by a random matrix preserves the vector’s norm.

Theorem 2. Let A be a k × d random matrix with i.i.d. entries aij ∈ N(0, 1). Set y = 1√
k
Ax so f : Rd → Rk.

Fix ε ∈ (0, 12). Then (1− ε)‖x‖2 ≤ ‖y‖2 ≤ (1 + ε)‖x‖2 with probability at least 1− 2e−
k
4
(ε2−ε3).

Proof. Set Z =
√
k
‖x‖y. Then zi = 1

‖x‖
∑d

j=1 aijxj . Each variable zi is a linear combination of Gaussian random
variables. This tells us gives us three important pieces of information:

(1) zi is a Gaussian random variable.
(2) E[aij ] = 0 ∀i, j.
(3) By Theorem 1 (from previous lecture), V ar(zi) = E[z2i ] = 1.

Combining these three facts, we see that zi ∈ N(0, 1).

Next, observe that ‖z‖2 =
∑d

j=1 z
2
i , which implies that ‖z‖2 ∈ χ2

k.

Now, applying Lemma 1,

P(‖y‖2 ≥ (1 + ε)‖x‖2) = P
(
‖x‖2‖z‖2

k
≥ (1 + ε)‖x‖2

)
= P(‖z‖2 ≥ (1 + ε)‖x‖2)

≤ e−
k
4
(ε2−ε3). (4)

Analogously,
P(‖y‖2 ≤ (1− ε)‖x‖2) ≤ e−

k
4
(ε2−ε3). (5)

Combining (4) and (5), we have the desired result.

�

There is also an alternative proof for Theorem 2 that highlights the utility of Gaussian distributions. This proof is
outlined below.

Proof. Let y = 1√
k
Ax, and let H be a unitary map so that

Hx =


‖x‖
0
0
...
0

 .
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(One might recognize H as a Householder reflector.) We then have that y = 1√
k
Ax = 1√

k
AH∗Hx, due to the fact

that H is unitary. Define Ã = AH∗. Using the fact that Gaussian distributions are rotationarily invariant, Ã is a
Gaussian matrix as well (with ãij ∈ N(0, 1)).

Therefore,

1√
k
Ã


‖x‖
0
0
...
0

 = ‖x‖ 1√
k


‖x‖
0
0
...
0

 .

This implies that ‖y‖2 = ‖x‖2
k ‖g‖

2, where g ∈ χ2
k. Once we have result, we can apply Lemma 1 to retrieve the

bounds stated in the theorem.

�

We are now prepared to state and prove the Johnson-Lindenstrauss Theorem.

2. THE JOHNSON-LINDENSTAUSS THEOREM

The Johnson-Lindenstrauss Theorem is especially useful for data analysis in large dimensions because it allows
us to project the data onto a low dimensional subspace while preserving the basic geometry of the data. What
follows is a statement about the existence of a low dimensional embedding. However, the proof of the theorem is
constructive, so provides a way to build such an embedding (see notes after the proof).

Theorem 3. (Johnson-Lindenstrauss): Let Q be a collection of n points in Rd. Let ε ∈ (0, 12). Pick an integer
k ≥ 20

ε2
log(n). Then there exists a Lipschitz map f = Rd → Rk so that ∀ u, v ∈ Q:

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2. (?)

Proof. Set y = f(x) = 1√
k
Ax where A is a k × d random matrix with aij drawn independently from an N(0, 1)

distribution. Theorem 2 shows that for any pair u, v ∈ Q, the bound (?) holds with probability at least 1 −
2e−

k
4
(ε2−ε3). There are n(n−1)

2 unique pairs of points u, v. Use a simple union bound. Let Fij be the event that pair

{ui, uj} fails. Theorem 2 implies that P(Fij) ≤ e−
k
4
(ε2−ε3). Therefore, the probability that no pair fails is

≤ 1−
∑

distinct pairs
{i,j}

P(Fij)

≤ 1− n(n− 1)

2
e−

k
4
(ε2−ε3).

If we use the k given by the theorem statement, then we see that there is nonzero probability that (?) holds. This
proves the existence of a low dimensional embedding that preserves distances. �

The following are some notes about this result:

(1) This proof provides a way to construct the map f . Namely, f could be a Gaussian random projection.
Statements of the theorem that incorporate a construction of f give a probability that f preserves distances.
As k is increased (above the necessary minimal value), the probability that a certain f preserves distances
goes to 1 exponentially fast.

(2) Using Gaussian random projections is in some sense optimal, but other distributions work as well. For
example, if the entires of A are drawn from Bournoulli distribution (the set {−1, 1}), then

1√
k
‖Ax‖ ≤ (1 + ε)‖x‖, and

1√
k
‖Ax‖ ≥ (1− ε)‖x‖

with probability bounded below by 1− e−
k
4
(ε2−ε3).
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(3) It is known that the Johnson-Lindenstrauss result is sharp up to a factor of log
(
1
ε

)
. This implies that we

can build a set of points that require

Ω

(
log(n)

ε2 log(1ε )

)
dimensions to accurately represent the distances between the points.
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