The Johnson-Lindenstrauss Theorem

The object of this lecture is to introduce and prove the Johnson-Lindenstrauss Theorem. This theorem proves (under certain conditions) that a set of points in a high dimensional space can be embedded into a low dimensional subspace so that distances are preserved.

1. Preliminary Results

We begin with a simple result from probability theory, which we state without proof.

Lemma 1. Let $Z \in \chi^2_k$ and $\epsilon \in (0, \frac{1}{2})$. Then

$$\mathbb{P}(Z \geq (1 + \epsilon)k) \leq e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)},$$

and

$$\mathbb{P}(z \leq (1 - \epsilon)k) \leq e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}.$$

The following theorem comes from the theory of random matrices. Heuristically, it gives the probability that multiplying a vector by a random matrix preserves the vector’s norm.

Theorem 2. Let A be a $k \times d$ random matrix with i.i.d. entries $a_{ij} \in N(0, 1)$. Set $y = \frac{1}{\sqrt{k}} Ax$ so $f : \mathbb{R}^d \to \mathbb{R}^k$. Fix $\epsilon \in (0, \frac{1}{2})$. Then

$$(1 - \epsilon)\|x\|^2 \leq \|y\|^2 \leq (1 + \epsilon)\|x\|^2$$

with probability at least $1 - 2e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}$.

Proof. Set $Z = \sqrt{k} \parallel x \parallel y$. Then $z_i = \frac{1}{\|x\|} \sum_{j=1}^d a_{ij} x_j$. Each variable z_i is a linear combination of Gaussian random variables. This tells us gives us three important pieces of information:

1. z_i is a Gaussian random variable.
2. $\mathbb{E}[a_{ij}] = 0 \forall i, j$.
3. By Theorem 1 (from previous lecture), $Var(z_i) = \mathbb{E}[z_i^2] = 1$.

Combining these three facts, we see that $z_i \in N(0, 1)$.

Next, observe that $\|z\|^2 = \sum_{j=1}^d z_j^2$, which implies that $\|z\|^2 \in \chi^2_k$.

Now, applying Lemma 1,

$$\mathbb{P}(\|y\|^2 \geq (1 + \epsilon)\|x\|^2) = \mathbb{P} \left(\frac{\|x\|^2 \|z\|^2}{k} \geq (1 + \epsilon)\|x\|^2 \right)$$

$$= \mathbb{P}(\|z\|^2 \geq (1 + \epsilon)\|x\|^2)$$

$$\leq e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}. \quad (4)$$

Analogously,

$$\mathbb{P}(\|y\|^2 \leq (1 - \epsilon)\|x\|^2) \leq e^{-\frac{k}{4}(\epsilon^2 - \epsilon^3)}. \quad (5)$$

Combining (4) and (5), we have the desired result.

□

There is also an alternative proof for Theorem 2 that highlights the utility of Gaussian distributions. This proof is outlined below.

Proof. Let $y = \frac{1}{\sqrt{k}} Ax$, and let H be a unitary map so that

$$Hx = \begin{pmatrix} \parallel x \parallel \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$
(One might recognize H as a Householder reflector.) We then have that $y = \frac{1}{\sqrt{k}}Ax = \frac{1}{\sqrt{k}}AH^*Hx$, due to the fact that H is unitary. Define $\tilde{A} = AH^*$. Using the fact that Gaussian distributions are rotationarily invariant, \tilde{A} is a Gaussian matrix as well (with $\tilde{a}_{ij} \in N(0,1)$).

Therefore,

$$\frac{1}{\sqrt{k}} \tilde{A} \begin{pmatrix} ||x|| \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = ||x|| \frac{1}{\sqrt{k}} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

This implies that $||y||^2 = \frac{||x||^2}{k} ||g||^2$, where $g \in \mathbb{R}^k$. Once we have result, we can apply Lemma 1 to retrieve the bounds stated in the theorem.

We are now prepared to state and prove the Johnson-Lindenstrauss Theorem.

2. THE JOHNSON-LINDENSTAUSS THEOREM

The Johnson-Lindenstrauss Theorem is especially useful for data analysis in large dimensions because it allows us to project the data onto a low dimensional subspace while preserving the basic geometry of the data. What follows is a statement about the existence of a low dimensional embedding. However, the proof of the theorem is constructive, so provides a way to build such an embedding (see notes after the proof).

Theorem 3. (Johnson-Lindenstrauss): Let Q be a collection of n points in \mathbb{R}^d. Let $\epsilon \in (0, \frac{1}{2})$. Pick an integer $k \geq \frac{20}{\epsilon^2} \log(n)$. Then there exists a Lipschitz map $f = \mathbb{R}^d \to \mathbb{R}^k$ so that $\forall u, v \in Q$:

$$(1 - \epsilon) ||u - v||^2 \leq ||f(u) - f(v)||^2 \leq (1 + \epsilon) ||u - v||^2. \quad (\star)$$

Proof. Set $y = f(x) = \frac{1}{\sqrt{k}}Ax$ where A is a $k \times d$ random matrix with a_{ij} drawn independently from an $N(0,1)$ distribution. Theorem 2 shows that for any pair $u, v \in Q$, the bound (\star) holds with probability at least $1 - 2e^{-\frac{1}{2}(\epsilon^2 - \epsilon^3)}$. There are $\frac{n(n-1)}{2}$ unique pairs of points u, v. Use a simple union bound. Let F_{ij} be the event that pair $\{u_i, u_j\}$ fails. Theorem 2 implies that $\mathbb{P}(F_{ij}) \leq e^{-\frac{1}{2}(\epsilon^2 - \epsilon^3)}$. Therefore, the probability that no pair fails is

$$\leq 1 - \sum_{\text{distinct pairs } \{i,j\}} \mathbb{P}(F_{ij}) \leq 1 - \frac{n(n-1)}{2} e^{-\frac{1}{2}(\epsilon^2 - \epsilon^3)}.$$

If we use the k given by the theorem statement, then we see that there is nonzero probability that (\star) holds. This proves the existence of a low dimensional embedding that preserves distances.

The following are some notes about this result:

1. This proof provides a way to construct the map f. Namely, f could be a Gaussian random projection. Statements of the theorem that incorporate a construction of f give a probability that f preserves distances. As k is increased (above the necessary minimal value), the probability that a certain f preserves distances goes to 1 exponentially fast.

2. Using Gaussian random projections is in some sense optimal, but other distributions work as well. For example, if the entries of A are drawn from Bournoulli distribution (the set $\{-1,1\}$), then

$$\frac{1}{\sqrt{k}} ||Ax|| \leq (1 + \epsilon) ||x|| \quad \text{and} \quad \frac{1}{\sqrt{k}} ||Ax|| \geq (1 - \epsilon) ||x||$$

with probability bounded below by $1 - e^{-\frac{1}{4}(\epsilon^2 - \epsilon^3)}$.

2
(3) It is known that the Johnson-Lindenstrauss result is sharp up to a factor of $\log \left(\frac{1}{\epsilon^2}\right)$. This implies that we can build a set of points that require

$$\Omega \left(\frac{\log(n)}{\epsilon^2 \log(\frac{1}{\epsilon^2})} \right)$$

dimensions to accurately represent the distances between the points.