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Johnson –Lindenstrauss Contd

(1− ε) ‖f(u)− f(v))‖ ≤ ‖u− v‖ ≤ (1 + ε) ‖f(u)− f(v))‖ (?)

k ∼ 1
ε2
log(n)

(?) holds with probability if we choose

f(u) = 1√
k
Au

where A is a k x d Gaussian

1. FAST – JL TRANSFORMS (FJLT)

When the map f is realized via a Gaussian random matrix, the cost to evaluate u 7→ f(u) is O(k × d)

Ailon & Chazelle proposed the projection

f(u) = PHDu

where

Dd×d is Diagonal
Hd×d is a Hessenberg Transform
Pk×d is a ”sort of” subsampling

f(u) can be evaluated in O(dlog(d)) time.

Ailon & Chazelle proved that the map can approximately preserve distance with high probability.

Later, the subsampled FFT was proposed

f((u) = SFD

where

F is the discrete Fourier Transform
D is Diagonal and D(i, j) = eiΘj with Θjε ∪ [0, 2Π]

The cost to evaluate f is O(mnlogk)→ reduced

Recall: We previously used SRFT to accelerate the randomized SVD from O(mnk) to O(mnlogk) for rank-k
approximation of an m× n matrix

Recent work includes looking for sparse maps or matrices with integer entries.

Question: Can we generalize the J–L Theorem to metric spaces?

2. BOURGAIN EMBEDDING

The idea of embedding a set Q of n points in Eculidean space Rd to Rk (for ”small” k) while approximately
preserving distances can be generalized to METRIC spaces.

Theorem (Bourgain Embedding): Let Q be a set of n points and let d Q × Q → [0,∞) be a metric. Then, ∃ a
map f : Q→ Rk for some k = O((logn)2) such that

‖f(u)− f(v)‖l1 < d(u, v) 6 ‖f(u)− f(v)‖l1 .c.log(n)
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where c is a universal constant.

A map f that realizes the bound can ”with high probability” be built in polynomial time n.

NOTE: The ”sparsest–cut” problem for a graph V,E is to find a partition V = S1 ∪ S2 such that |E(S1,S2)|
|S1||S2| is

minimized.

The sparsest–cut minimization problem can be expressed in terms of certain matrices on V . The Bourgain embed-
ding techniques are useful in solving the optimization problem efficiently (”In probability” since the sparsest–cut
problems are NP hard).

3. CONNECTION TO CENTRAL LIMIT THEOREM

Theorem(Central Limit: Let
{
Xi

}n
i=1

be a set of i.i.d random variables with mean µ and variance σ2

Sk = 1
k

∑n
j=1Xj (average)

As K increases, the distribution of Sk will approach a normal distribution with mean µ and variance 1
kσ

2

k × d Gaussian matrix and y = 1√
k
Ax

Then

‖y‖2 = 1
k ‖g‖

2 ‖x‖2

where ‖g‖2 has a χ2
k distribution.

So, the distribution of ‖y‖2 looks like.
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As k grows, the variance in ‖y‖2 shrinks, but pretty slowly.

This result is similar to classical MONTE–CARLO, where the expected errors shrink as 1√
k

where k = # samples
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