(\star)

Johnson –Lindenstrauss Cont^d

$$(1-\varepsilon) \|f(u) - f(v))\| \le \|u - v\| \le (1+\varepsilon) \|f(u) - f(v))\|$$
$$k \sim \frac{1}{\varepsilon^2} log(n)$$

 (\star) holds with probability if we choose

$$f(u) = \frac{1}{\sqrt{k}}Au$$

where A is a k x d Gaussian

1. FAST – JL TRANSFORMS (FJLT)

When the map f is realized via a Gaussian random matrix, the cost to evaluate $u \mapsto f(u)$ is $O(k \times d)$

Ailon & Chazelle proposed the projection

$$f(u) = PHDu$$

where

 $D_{d \times d}$ is Diagonal $H_{d \times d}$ is a Hessenberg Transform $P_{k \times d}$ is a "sort of" subsampling

f(u) can be evaluated in O(dlog(d)) time.

Ailon & Chazelle proved that the map can approximately preserve distance with high probability.

Later, the subsampled FFT was proposed

$$f((u) = SFD$$

where

F is the discrete Fourier Transform D is Diagonal and $D(i, j) = e^{i\Theta j}$ with $\Theta j \epsilon \cup [0, 2\Pi]$

The cost to evaluate f is $O(mnlogk) \rightarrow$ reduced

Recall: We previously used SRFT to accelerate the randomized SVD from O(mnk) to O(mnlogk) for rank-k approximation of an $m \times n$ matrix

Recent work includes looking for sparse maps or matrices with integer entries.

Question: Can we generalize the J-L Theorem to metric spaces?

2. BOURGAIN EMBEDDING

The idea of embedding a set Q of n points in Eculidean space \mathbb{R}^d to \mathbb{R}^k (for "small" k) while approximately preserving distances can be generalized to METRIC spaces.

Theorem (Bourgain Embedding): Let Q be a set of n points and let $d Q \times Q \rightarrow [0, \infty)$ be a metric. Then, \exists a map $f : Q \rightarrow \mathbb{R}^k$ for some $k = O((logn)^2)$ such that

$$\|f(u) - f(v)\|_{l^1} < d(u, v) \leq \|f(u) - f(v)\|_{l^1} . c. log(n)$$

where c is a universal constant.

A map f that realizes the bound can "with high probability" be built in polynomial time n.

<u>NOTE</u>: The "sparsest-cut" problem for a graph V, E is to find a partition $V = S1 \cup S2$ such that $\frac{|E(S_1, S_2)|}{|S_1||S_2|}$ is minimized.

The sparsest-cut minimization problem can be expressed in terms of certain matrices on V. The Bourgain embedding techniques are useful in solving the optimization problem efficiently ("In probability" since the sparsest-cut problems are NP hard).

3. CONNECTION TO CENTRAL LIMIT THEOREM

Theorem(Central Limit: Let $\{\overline{\underline{X_i}}\}_{i=1}^n$ be a set of i.i.d random variables with mean μ and variance σ^2

$$S_k = \frac{1}{k} \sum_{j=1}^n \overline{X}_j$$
 (average)

As K increases, the distribution of S_k will approach a normal distribution with mean μ and variance $\frac{1}{k}\sigma^2$ $k \times d$ Gaussian matrix and $y = \frac{1}{\sqrt{k}}Ax$

Then

$$||y||^2 = \frac{1}{k} ||g||^2 ||x||^2$$

where $||g||^2$ has a χ_k^2 distribution.

So, the distribution of $||y||^2$ looks like.

As k grows, the variance in $||y||^2$ shrinks, but pretty slowly.

This result is similar to classical *MONTE-CARLO*, where the expected errors shrink as $\frac{1}{\sqrt{k}}$ where k = # samples