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The Fast Multipole Method
The Fast Multipole Method provides a fast and precise approximation of n-body interactions. The algorithm scales
linearly, and depends logarithmically on the inverse of the tolerance.

1. INTRODUCTION

Throughout this lecture, it might be easier to consider the Fast Multipole Method as it relates to evaluating electric
potentials (a common problem in physics). Given a set of electric charges, each charge exerts a force on every other
charge, and this force can be represented as an electric potential. We would like to determine the electric potential
that is acting on every charge. Let {xi}ni=1 be a set of n points in Rd (for our example, we can consider only the
case where d = 2). Let A be an n× n matrix with entries A(i, j) = G(xi, xj), where G is a kernel function. Our
objective is to evaluate u = Aq.

Here, u is a vector containing the electric potential acting on each charge, and q is the vector of charges. G(i, j)
describes the potential acting on charge j due to charge i, and it can be written as

G(x, y) =

{
log(x− y) x 6= y,

0 x = y.

Naı̈vely, calculating u would require the evaluation of n2 interactions. However, the Fast Multipole Method allows
us to approximate the solution within an error of ε using only O(Cn) operations, where C = O(log(1ε )

2) (in two
dimensions).

2. ESTABLISHING THE FMM

In general, the kernel G is difficult to compute exactly. For our example from electrostatics, G is the solution to a
partial differential equation. The Multipole Expansion gives an approximate “separation-of-variables” solution to
the PDE, and we can write this solution as a sum of matrix products:

G(x, y) ≈
P∑
p=1

Bp(x)Cp(y).

From the linear equation u = Aq and our construction of A, we then have

ui ≈
n∑
j=1

P∑
p=1

Bp(xi)Cp(yj)qj

=
P∑
p=1

Bp(xi)

 n∑
j=1

Cp(yi)qj


=

P∑
p=1

Bp(xi)q̂p,

where we defined q̂p appropriately. Computing q is now reduced to two steps.

(1) Compute q̂p =
∑n

j=1Cp(yj)qj for p ∈ {1, 2, · · · , P}. This costs O(nP ).
(2) Compute ui =

∑P
p=1Bp(xi)q̂p for i ∈ {1, 2, · · · ,m}. The cost of this step is O(Pm). The total cost of

these two steps is then O(P (m+ n)).

Aside: The matrix A has a low numerical rank, so its singular values decay exponentially. This is why we are able
to take only P terms of the sum and achieve a precise approximation.
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This process is easier to understand with an example. Returning to our problem from electrostatics, we let

G(x, y) =

{
log(x− y) x 6= y,

0 x = y.

If we choose a central point C0 about which we calculate the potentials, we have log(x− y) = log((x− c0)− (y−
c0)) = log(x− c0) + log(1− y−c0

x−c0 ). For convenience, set t := y−c0
x−c0 . Expanding this expression for the potential

in a Taylor series, we have

log(x− y) = log(x− c0) + log(1− y − c0
x− c0

)

= log(x− c0) +
∞∑
p=1

(
− t

p

p

)
For |t| < 1, the Taylor series is convergent. Because of this convergence (or, if you prefer, because the matrix A
defined by G is of low numerical rank), we can truncate the series after obtaining P terms. This gives

log(x− y) = log(x− c0) +
P∑
p=1

(
− t

p

p

)
+ Ep,

where the error term Ep satisfies

|Ep| ≤ K
(
|x− C0|
|y − c0|

)P+1

.
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