APPM 4720/5720 — week 14:
Structured matrix computations

Gunnar Martinsson
The University of Colorado at Boulder

What is the cost of a matrix-vector multiply b = Ax with an N x N matrix A?

e If A is a general matrix, then the cost is O(N?).
e If A is sparse with say k elements per row, then the cost is O(k N).

e If A is circulant (so that A(/,j) = a(i —j)), then the FFT renders the cost O(N log N).
(Similar statements hold for Toeplitz matrices, Hankel matrices, etc.)

e If A has rank k (so that A = BC* where B and C are N x k), then the cost is O(kN).

In general, we say that a matrix is structured if it admits algorithms for matrix-vector
multiplication, that have lower complexity than that of a general matrix.

Example: Let {x,-}f.\i1 be a collection of points in R? and set A(i,j) = log |X; — Xj|. Then
g — Aq can be evaluated in O(N) operations, and A is “structured.”

The matrix A is a particular example of what we call a rank-structured matrix. These
have the property that their off-diagonal blocks have numerically low rank.

Many rank structured matrices allow fast operations not only for matrix-vector multiply,
but also for matrix inversion, LU-factorization, matrix-matrix multiply, etc.

This lecture describes a particularly simple class of structured matrices.

Review of the SVD and numerical ran

Kk:

Every m x n matrix A admits a factorization (with r = min(m, n)):

The singular values o; are ordered so th

61 0 - 0| |V
0 .- 0 v

ul | = 72 2 | —UuDV*.
0 0 - a| |V

atoy >00>--->0r>0.

The left singular vectors u; are orthonormal.

The right singular vectors v; are orthonormal.

The SVD provides the exact answer to t

0j;1 =min{|

ne low rank approximation problem:

A — B|| : B hasrankj},

J
Y ouv; =argmin{||A — BJ| : B has rank j}.

=1

Definition: We say that A has c-rank (at most) k if oy 1 <e.

A very simple family of rank structured matrices
We informally say that a matrix is in S-format if it can be tesselated “like this”:

‘A8£ ‘ABQ
A45
‘Agﬁ ‘Agﬁ
‘A23
A10,10 A10,11
A,] |
LY V. We require that
¢ the diagonal blocks are of size at
A A
12,12 "12,13
| A most 2k x 2k
) A1z 12| Azis e the off-diagonal blocks (in blue in
3,2 .
A |a the figure) have rank at most k.
14,14] " 14,15
A7ﬁ
A A

15,14 15,15

The cost of performing a matvec is then

2x%k+4x%k+8x%k+---~NIog(N)k.
IogN}rerms

Note: The “S” in “S-matrix” is for Simple — the term is not standard by any means ...

Notation: Let A be an N x N matrix. To properly define an S-matrix, we first need to

define the concept of an index tree on the index vector [= [1,2,3,...,N].

The idea is to execute recursive bijection:

Level O:

Box 1

400

Iy =1:400

Notation: Let A be an N x N matrix. To properly define an S-matrix, we first need to
define the concept of an index tree on the index vector [= [1,2,3,...,N].

The idea is to execute recursive bijection:
Box 1

Level O: s

Iy =1:400

Box 2 Box 3

Level 1:

I =1:200 I =201: 400

Notation: Let A be an N x N matrix. To properly define an S-matrix, we first need to
define the concept of an index tree on the index vector [= [1,2,3,...,N].

The idea is to execute recursive bijection:

Box 1
Level O: L
l{ =1:400
Box 2 Box 3
Level 1:
l, =1:200 I = 201: 400
Box 4 Box 5 Box 6 Box 7
Level 2:

I, =1:100 Is =101: 200 le =201: 300 I, =301: 400

Notation: Let A be an N x N matrix. To properly define an S-matrix, we first need to
define the concept of an index tree on the index vector [= [1,2,3,...,N].

The idea is to execute recursive bijection:

Box 1
Level O: Ll
l{ =1:400
Box 2 Box 3
Level 1:
l, =1:200 I = 201: 400
Box 4 Box 5 Box 6 Box 7
Level 2:
I, =1:100 Is =101: 200 le = 201: 300 l- =301: 400

Box8 Box9 Box10 Box11 Box 12 Box 13 Box 14 Box 15
Level 3: E N I e 0 O S e 0 Y B 0 e O Y R Y e T I I Y e A Y)

Notation: Let A be an S-matrix of size N x N.
Suppose 7 is a binary tree on the index vector / =[1, 2, 3, ..., N].

For a node 7 in the tree, let /- denote the corresponding index vector.

Level O G Iy =[1,2, ..., 400]

Level 1 e e lb=[1,2,...,200], I3 = [201, 202, ..., 400]
Level 2 e e 6 e I,=[1,2,...,100], Is = [101, 102, ..., 200], ...
Level3 e @ G @ @ @ @ lg=[1,2,...,50],1ls=[51,52,...,100], ...

For nodes o and 7 on the same level, set A, = A(/;, I;).

With the binary tree of indices {/;},, and with A, - = A(/s, I;), we get

Every “blue” matrix has numerically low rank and admits a factorization

~

AU,T — UU AU,T VT
nxn nNxKKxKkKxn

Operations involving a blue matrix are executed using its compact representation.

Matrix vector multiply b = Ax: INITIALIZATION

Matrix vector multiply b = Ax: Process node 1

>

A7,6
15,14 A15,15
b2 i b2 0 A2’3 i Xo
b3 b3 Azz2 0 | [X3

Matrix vector multiply b = Ax: Process node 2

A8,8

A9,8

A

8,9

A

4,5

2,3

Are
15,14 A15,15
b4 i b4 n 0 A4’5 i X4
b bs As4 0 | [Xs5

Matrix vector multiply b = Ax: Process node 3

m m
| A3,2 m m
6

A1 5,14 A1 5,15

A7,

The children of node 3 are {6,7};

Matrix vector multiply b = Ax: Process node 4

14

>

A7,6
15,14 A15,15
b8 i b8 0 A8,9 i Xg
bg bg Ag 8 0 Xg

Matrix vector multiply b = Ax: Process node 5

15

>

The children of node 5 are {10, 11};

A7,6
A15,14 A15,15
b1g b1g 0 A1 | X0
by | [by1] [Ag110 O Xq1 |

Matrix vector multiply b = Ax: Process node 6

>
©
o
1Y
o
>

A1 5,14 A1 5,15

The children of node 6 are {12, 13};

by> b2 0 A1 | X2

bz [biz| [Az312 0 | |X43]

Matrix vector multiply b = Ax: Process node 7

>
©
0
1Y
o
>

IIIIlIIIIIIlII)

m m A6,7
A3,2 m m
17 'A7£
A A

15,14 15,15

The children of node 7 are {14, 15};

b4 b4 0 Aig15] | X14

bis| [bis| |A514 O X5

Matrix vector multiply b = Ax: Process node 8

I8 A A

>
©
o
1Y
o
>

m m)

) m m
A

A1 5,14 A1 5,15

Node 8 is a leaf
b8 = b8 + A8,8X8

Matrix vector multiply b = Ax: Process node 9

NH A

2,3

A1 5,14 A1 5,15

Node 9 is a leaf
b9 = bg + A979X9

Matrix vector multiply b = Ax: Process node 10

>
©
o
1Y
o
>

2,3

) m m
A

A1 5,14 A1 5,15

Node 10 is a leaf
big=b1g+ Ai0.10X10

ETC

MATRIX-VECTOR MULTIPLY FOR AN S-MATRIX:

b=0
loop 7 is a node in the tree
if 7 is a leaf
b(IT) — b(IT) + AT,T X(IT)
else

Let 04 and o, denote the children of 7.
0 As oo | | X(Ioy)
As,o, 0 X(/5,)

end if

end loop

Note: The loop can be traversed in any order. This makes parallelization trivial.

Question: How do you find the factors in the sibling pairs?

In the context of direct solvers for finite element and finite difference problems, this turns
out to not be an issue — the matrices are typically built up piecemeal.

In the context of integral equations (where the coefficient matrix will be dense), it is a
major issue. Overcoming this was crucial to much of the recent progress in the field.

Recursive representations of rank-structured matrix algorithms:
We can define the S-matrix format in recursive form by saying that A is a S-matrix with
internal rank k if either A is itself of dimension at most k, or if A admits a blocking

A1 Aqp
A1 Az |

where A4 and A, are S-matrices, and A4, and A, are of rank at most k.

A =

)

The formula for the matrix-vector product can then be written as follows:

function b = matvec(A, x)
iIf A is dense
b= AX
else
A AL
SplitA=| 117121
Aoy App |
b_ _0 A11_ _X-I- n -matveC(A-H,X-])_
I A21 0 1L X2] I matveC(Azz, X2)] .
end

With the recursive representation, we can easily derive a formula for AT

First note that for any 2 x 2 block matrix A we have
1 -

Arr Arz Sy ~S;1A12A,
1 1 a—1 . A—1 1 1
A1 Ao | AL A21S) Agy AL AS ARRA,,

where S41 = A4 — A12A2_21 A, (provided that both A521 and S1_11 exist). This leads to :

function B = matinv(A)

if A is dense
B-A"
else
A AL
SplitA=| 117121
Aoy Ao |

Xoo = matinv(Ass)
Ty1 = matinv(Aqq — A1aXo0A01).

T4 —T11A12X2
—T11A21Xn Xop + XooApT11Az1Xo5 |

B —

end

Note: You need a low-rank update, recompression, etc.

There exist more “elegant” recursions. For instance, recall the Woodbury formula:

Suppose that an n x n matrix A can be split into
A =D + U A V

nxn nxn nxkkxkKkKxn

where D is a matrix that is for some reason easy to invert (diagonal, block-diagonal, ..

and UAV* is a “rank-k” correction.
Then the Woodbury formula states that
(D+UAV*)' = D' — D 'U (A+Vv'D 'u) ' vD .

nxn nxn n x k K x k K x n

The point is that we can construct A~ by executing:

1. Invert D.
2. Invert the k x k matrix A + V*D~1U.

3. Perform a rank-k update to D',

Inversion of S-matrix using Woodbury

Recall the Woodbury formula

(D+UAV*) "=p'—D 'U(A+VvD'U) 'v:D .

For an S-matrix, we have

A:

Ay O
0 Ay

U, 0
0 U,

+

Ay O

0 A| [Vvio
0 V3]

Applying the Woodbury formula, we find, with S14 = V*1<A1_11 U, and S, = V§A§21 U,,

T A—1
A1 A11 01
i 0 A22
2N X 2n 2N X 2n

|

e
Aqy U (1’
0 A,Uy

2N x 2Kk

S; A

Asy Sy
2K x 2K

1

- 1
VA7l 0

0 VZA
2K x 2n

The recursion is now “cleaner,” as we can process A4 and Ao, independently.

(In the previous formula, you first build A§21, then invert A{4 — A12A2_21 Asq.)

1
22 _

The “S-matrix” format is very easy to use, but is not very efficient.

e Recursion tends to lead to simple formulas, but can be dicey to implement efficiently.
e The tree is traversed up and down many times.

e The off-diagonal blocks can be very large, which means that even though they have
rank K, it becomes expensive to store and manipulate the factors.

We will in Lecture 8 describe a more efficient format, called Hierarchically Block
Separable (HBS) matrices (or “Hierarchically Semi-Separable (HSS)” matrices).

Question: Can you invert a matrix in the “FMM format”?

This is a little more complicated. The main problem is that the “tessellation pattern” is
different. For instance, consider a set of n point charges along a line:

|X1 Xo Xn |
=

| @ *—0 *—0 -00-0 *—0 *0—0—0 |

Then the matrix A with entries A(/,/) = log |x; — X;| would be tessellated as

HEEEE n
EEEE _||:|

L] LI

Red blocks are represented as dense matrices. Blue blocks are low rank.
Note how all low-rank blocks are “well-separated” from the diagonal.

Now suppose that we want to invert the FMM matrix using the formula

AT =

A1
Al 0

1
0 Ay

l

Well, look at what happens to the partitioning:

The matrices A1, and A>4 now have much more complicated structure.
You can still invert it, but it is harder — will return to this point.

A —1 RYLY O A
A, Uy ? ViAy1Us A1%
0 AJUy| | Ay VAU
A m
2 L2

1

BYL T O
V1A11

0

0
ViA

1
22

The key question here is buffering — do you compress directly touching blocks or not?

Schemes like the FMM, H-matrices, etc., do use buffering. Advantages include:
e Lower ranks — sometimes far lower.

e Much easier to construct representations — can use smoothness, analytic
expansions, etc.

Most of the direct solvers described in this lecture (based on S-matrices, HBS matrices,
etc), do not use buffering.

e Higher ranks — dense volume problems in 3D tend to get prohibitive.
e Harder to construct compressed representations.
e Much easier to use data-structures.

We will return to the question of buffering throughout the lectures.

