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Recall: A very simple format for rank-structured matrices ...
We informally say that a matrix is in S-format if it can be tesselated “like this”:

A8,8 A8,9
A4,5
A9,8 A9,9
A2,3
A10,10 A10,11
A, ] |
LY V. We require that
¢ the diagonal blocks are of size at
A A
12,12 "12,13
| A most 2k x 2k
) A1z 12| Azis e the off-diagonal blocks (in blue in
3,2 .
A |a the figure) have rank at most k.
14,14 " 14,15
A7,6
A15,14 A15,15

The cost of performing a matvec is then

2x%k+4x%k+8x%k+---~NIog(N)k.
IogN}rerms

Note: The “S” in “S-matrix” is for Simple — the term is not standard by any means ...



Recall that inversion of an S-matrix is a rather complicated operation — multiple
traversals up and down the tree, various log-factors in complexity estimates, etc. To
overcome these problems and attain O(N) complexity, let us first introduce so called
block separable matrices. Consider a linear system

Ag-=t
where A is a “block-separable” matrix consisting of p x p blocks of size n x n:
Dy Ags Ags Asgy
As4 D5 Asg Asy
Ags Ags Dg Agy
A74 A7s Azg D7

(Shown for p = 4.)

Core assumption: Each off-diagonal block A;; admits the factorization
A "

i = U, A,-j V;-k
nxn nxKKxkKxn

where the rank k is significantly smaller than the block size n.
The critical part of the assumption is that all off-diagonal blocks in the i’th row use the
same basis matrices U; for their column spaces (and analogously all blocks in the j'th
column use the same basis matrices V; for their row spaces).




What is the role of the basis matrices U, and V.?

Dy, UyAu5VE UgAugVE UgAyr V3
UsAs,V, Ds  UsAggVs UsAg, V3
UgAgsV; UgAgsVe Dg  UgAg, V3
U,A;,V; U;A5V: U, AV Dy

Recall our toy example: A =

We see that the columns of U, must span the column space of the matrix A(l4, /;) where
/4 is the index vector for the first block and /5 = /\/,.

The matrix A



What is the role of the basis matrices U, and V.?

Dy UgAu5VE UgAugVE UgAy V3
UsAssV, Ds  UsAggVys UsAg, V3
UgAgsV; UgAgsVe Dg  UgAg, V3
U,A;,V; U;A5V: U, AV Dy

Recall our toy example: A =

We see that the columns of U5 must span the column space of the matrix A(/s, Iz) where
I5 is the index vector for the first block and Iz = /\/s.

The matrix A



Dy UgAu5VE UgAugVE UgAys V3
U-A-,V: D Us A Vi Uz Ao VE
Recall A = 5~54 :]<. ~5 ) 5M56 Vg 5~57 Z
UsAsaVy UsAgsVs  Ds  UsAg7 V7
U;A,4V; U;A5VE U,A5VE Dy
Then A admits the factorization'
U, 0 Aus Ass Ag7 | |V
A_ Us Asy 0 Agg As; Vs
Us Ags Ags 0 Ag7 Vs
i U7 _A74 Azs Azg O || V7
~U A _V*
or
A — U A V* 4
pnxpn pnxpk pkxpk pkxpn

e

pnxpn




Lemma: [Variation of Woodbury] If an N x N matrix A admits the factorization

~

A = U A V* + D,
pnxpn pnxpk pk xpk pkxpn pnxpn
then
A~ -~ E (A+D) = + G,
pnxpn pnxpk pkxpk pkxpn pnxpn

B -

where (provided all intermediate matrices are invertible)

D-(v'D'U)"', E=D'Ub, F=dV'D '), G=D"'-D'ubv'D "

Note: All matrices set in blue are block diagonal.

Classical Woodbury: (D +UAV*)"' =D~ ' - D 'U(A+v*D'u) 'v'D .



Derivation of “our” Woodbury: We consider the linear system

D,  UyAusVE UgAug Vg UsAgr V5 | | ay
UsAs4V; D5 UsAsgVg UsAs; V3 | | Os
UsAgsV; UgAgsVs  Dg  UgAgr V7| | g
(U7A74V; U7A75V; Uz AgVg D7 | | a7
Introduce reduced variables q; = V7 q;.
The system > ; Aj;q; = f; then takes the form
'D, 0 0 O 0 UA;zUAl UA,,
0 D 0 0 UA;; 0 UsA;5 UA;-
0 0 Dg 0 UgAgs UsAg: 0  UgAg-
0 0 0 D; U/AyuUArsUAyg O
vV 0 0 0 I 0 0 0
0 -v: 0 0 0 I 0 o0
O O —Vg 0 0 0 | 0
0 0 0 V5 0 0 0 |

Now form the Schur complement to eliminate the g;’s.

0O O 0O O
~ » (&) EAN




After eliminating the “fine-scale” variables q;, we obtain

| VZ/:\ZA: UsAys VZAL: UsAse
V§A§51 UsAsy | \’2‘5‘5_51 UsAsg
ViAss UsAs1 ViAss UsAs |
V?&;; U,A-, Vél\;; U;A7s V;A;; U7A76

N T
VA4 UsAyy;
U T
V:Ass UsAgy
w1
VeAgss UgAg7
|

O O 0O O
N~ OO o B~

ViD, ',
ViD; ' fs
ViD, ' fg

1
ViD, ;.




After eliminating the “fine-scale” variables q;, we obtain

« k1 A
ViAse UsAg, |

R T VT T
VsAss UsAg1 VgAss UsAgs |

We set

A; = (viD;'u)

and multiply line i by A,-,- to obtain the reduced system

Ay Ays /}46 647
Asy Ags Asg As;
Ags Ags Agg Agy
Az4 Azs Azg Azz

where

S PRI TR
| V7A77U7A74 V7A77 UzA75 V7A77 UzAze

O: O
(&)

O
(@)

O

4

7

<1 <1 s <1

| Vilad Uhas Vilag Uihas Vihas Uiy

V5As5 UsAgg V5Ass UsAsy
v

VeAss UsAs7

fi=A;V; D,.71 f;

O O 0O O
N~ OO o B~

ViD, ',
ViD; ' fs
ViD, ' fg

1
ViD, ',




Before compression, we have a pn x pn linear system

p
ZA’/q/:f” i:1,2,...,p.
Jj=1

After compression, we have a pk x pk linear system
D;d; + > AjG; =1, i=12..p.
i7]
Recall that k is the e-rank of A; ; for i # J.
The point is that kK < n.

The compression algorithm needs to execute the following steps:

e Compute U;, V;, A so that Aj = U; A; V.
 Compute the new diagonal matrices D;; = (V} AI.IT1 U,-)_1.

e Compute the new loads §; = D;; V; AI.,_.1 q;-

The original matrix

The reduced matrix

For the algorithm to be efficient, it has to be able to carry out these steps locally.

To achieve this, we use interpolative representations, then A; ; = A(/;, /;).



We have built a scheme for reducing a system of size pn x pn to one of size pk x pk.

EEEE T

EEEE - = "=
T

HEEE ENE

The computational gain is (k/n)3. Good, but not earth-shattering.
Question: How do we get to O(N)?

Answer: It turns out that the reduced matrix is itself compressible. Recurse!



A globally O(N) algorithm is obtained by hierarchically repeating the process:

1 Compress ya 1 Compress | Compress
Cluster Cluster




Formally, one can view this as a telescoping factorization of A:

A — U(3)(U(2)(U(1) B(O) (v(Dy* 4 B(1))(V(2))* 4 B(Z))(V(S))* 1+ p®).

Expressed pictorially, the factorization takes the form
u® u® u (V(S))*

(1) g(0) (V(1))* B(1) (V(Z))* B(2)
i " B
e e, T

The inverse of A then takes the form
A—1 _ E(3)(E(2)(E(1) ﬁ(o) (F(‘I))* 4 6(1))(F(2))* 1 6(2))(\/(3))* D

(0)

All matrices are block diagonal except D , Wwhich is small.



Formal definition of an HBS matrix

Let us first recall the concept of a binary tree on the index vector:
Let A be an N x N matrix.

Suppose 7 is a binary tree on the index vector / =[1, 2, 3, ..., N].

For a node 7 in the tree, let /- denote the corresponding index vector.

Level O G Iy =[1,2,...,400]

Level 1 9 e lb=[1,2,...,200], Iy = [201, 202, ..., 400]
Level 2 o e 6 e I,=[1,2,...,100], Is = [101, 102, ..., 200], ...
Level3 e @ Q @ @ @ @ lg=[1,2,...,50],ls=[51,52,...,100], ...

For nodes o and 7 on the same level, set A, = A(l,, I;).



Formal definition of an HBS matrix
Suppose 7T is a binary tree.
For a node 7 in the tree, let /- denote the corresponding index vector.

For leaves o and 7, set A, - = A(l,, /) and suppose that all off-diagonal blocks satisfy

~

A, = U, A, V: oFT
nxn nxkKxKkKkKkxn

For non-leaves o and 7, let {04, 05} denote the children of ¢, and let {4, 75} denote the
children of 7. Set

~

A AU1 1 AU1 T2
o7 — | =

~

| As,r A
Then suppose that the off-diagonal blocks satisfy

02,72 |

~

A, = U, A, V; oF£T
2k x 2k 2k x Kk k x k k x 2k



An HBS matrix A associated with a tree T is specified by the following factors:

Name: | Size: Function:

For each leaf - nxn | The diagonal block A(/-, ;).

- n x k | Basis for the columns in the blocks in row .
n x kK | Basis for the rows in the blocks in column 7.

node T:

ﬂ

2k x 2k | Interactions between the children of .
- 2k x k |Basis for the columns in the (reduced) blocks in row .
- 2k x k |Basis for the rows in the (reduced) blocks in column 7.

For each parent

ﬁ

D
U
\'
B
node T U
\'




INVERSION OF AN HBS MATRIX

loop over all levels, finerto coarser, ¢/ =L, L —1, ..., 1
loop over all boxes 7 on level /,
if 7 is a leaf node
X=D;
else

Let 04 and o, denote the children of .

_ D‘71 B(717(72
- L B02701 DUZ i
end if
D, = (ViX Tu;)
E.=X"'U,D;
Fif=D,ViX .
G- =X"'-X"'U,D,V:X!
end loop
end loop
D, Bss |

G —

B3> D3 |




function EFG = OMNI_invert_HBS_nsym(NODES)
nboxes = size(NODES,2);
EFG = cell(3,nboxes);
ATD_VEC = cell(1,nboxes);
% Loop over all nodes, from finest to coarser.
for ibox = nboxes: (-1):2
/» Assemble the diagonal matrix.
if (NODES{5,ibox}==0) % ibox is a leaf.
AD = NODES{40,ibox};
elseif (NODES{5,ibox}==2) 7 ibox has precisely two children
isonl = NODES{4,ibox}(1);
ison2 = NODES{4,ibox}(2);
AD = [ATD_VEC{isonl},NODES{46,isonl1};NODES{46,ison2},ATD_VEC{ison2}];
end
%» Extract the matrices U and V.
U = NODES{38,ibox};
V = NODES{39,ibox};

% Construct the various projection maps.
ADinv = inv(AD);

ATD = inv(V’*ADinv*U) ;

ATD_VEC{ibox} = ATD;

EFG{1,ibox} = ADinv*Ux*ATD;

EFG{2,ibox} = ATD*(V’)*ADinv;

EFG{3,ibox} = ADinv - EFG{1,ibox}*(V’*ADinv);

end

% Assemble the "top matrix" and invert it:

AT = [ATD_VEC{2},NODES{46,2};NODES{46,3},ATD_VEC{3}];
EFG{3,1} = inv(AT);

return



Now let us return to the question of how to compute a block-separable factorization of a
matrix A, where the low-rank factorization is based on an interpolative decomposition.

Example: Consider an N x N matrix A, and a partitioning of the index vector
[={1,2,3,..., N} =1, UlsUlgU .
We then seek to determine matrices {U, VT}Z: 4 and index vectors 7,46 C I. such that

A(l;,1;)=U; A,V o+,

~

where A, , = A(I;, I,) is a submatrix of A ;.

In other words, we seek a factorization

U, 0 Ay Ags Ay Vi D4
Us Asy 0 Agg As; Vs D5
Us Ags Ags 0 Agy Ve De
U; | | A7y Ass Azg O V7 D7

N 4 4 b 4 ) b 4

=U _A =V* =D




What is the role of the basis matrices U, and V.?

Dy, UyAu5VE UgAugVE UgAyr V3
UsAs,V, Ds  UsAggVs UsAg, V3
UgAgsV; UgAgsVe Dg  UgAg, V3
U,A;,V; U;A5V: U, AV Dy

Recall our toy example: A =

We see that the columns of U, must span the column space of the matrix A(l4, /;) where
/4 is the index vector for the first block and /5 = /\/,.

The matrix A



What is the role of the basis matrices U, and V.?

Dy UgAu5VE UgAugVE UgAy V3
UsAssV, Ds  UsAggVys UsAg, V3
UgAgsV; UgAgsVe Dg  UgAg, V3
U,A;,V; U;A5V: U, AV Dy

Recall our toy example: A =

We see that the columns of U5 must span the column space of the matrix A(/s, Iz) where
I5 is the index vector for the first block and Iz = /\/s.

The matrix A



As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which U
and V. contain identity matrices. To review how this works, consider a situation with n
sources in a domain €24 inducing m potentials in a different domain 2.

Source locations {y;}!" Target locations {x;}"
JJj=1 1Jj=1

Let Ap4 denote the m x n matrix with entries A (/,j) = log |x; — y;|. Then

= Ay 4
m x 1 mxnnx1



As mentioned earlier, it is handy to use the interpolative decomposition (ID), in which U
and V. contain identity matrices. To review how this works, consider a situation with n
sources in a domain €24 inducing m potentials in a different domain 2.

Source locations {y;}!" Target locations {x;}"
JJj=1 1Jj=1

Let Ap4 denote the m x n matrix with entries A (/,j) = log |x; — y;|. Then

f = Ay q = Uy Ay Vi ¢
m x 1 mxnnx mxkKxkkxnnx1

where Aoy = Asq(ln, 11) is a k x k submatrix of A.
The index vector 71 C {1, 2, ..., n} marks the chosen skeleton source locations.

The index vector 72 C {1, 2, ..., m} marks the chosen skeleton target locations.



Review of ID: Consider a rank-k factorization of an m x n matrix: Aoy = Uy Aoy '

Sources in 14 Targets in Q5
Az
g f>
Ao Vi Uz
%
91 A f5

To precision 10~1°, the rank is 19.

Advantages of the ID:

e The rank k is typically close to optimal.

e Applying V7 and U, is cheap — they both contain k x k identity matrices.
e The matrices V§ and U, are well-conditioned.

e Finding the k points is cheap — simply use Gaussian elimination.

e The map A12 is simply a restriction of the original map A4o».
(We loosely say that “the physics of the problem is preserved’.)

e Interaction between adjacent boxes can be compressed (no buffering required).



When the ID is used to compress the off-diagonal blocks, then all “black” blocks in the
graphic below are unchanged compared to the original matrix. All you do is extract
sub-blocks of the original off-diagonal blocks!

1 Compress ya 1 Compress | Compress

Cluster Cluster
fF 111111




