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Abstract. In this paper, we propose new adaptive local refinement (ALR) strategies for first-
order system least-squares (FOSLS) finite element in conjunction with algebraic multigrid (AMG)
methods in the context of nested iteration (NI). The goal is to reach a certain error tolerance with
the least amount of computational cost and nearly uniform distribution of the error over all ele-
ments. To accomplish this, the refinement decision at each refinement level is determined based on
optimizing efficiency measures that take into account both error reduction and computational cost.
Two efficiency measures are discussed, predicted error reduction and predicted computational cost.
These methods are first applied to a 2D Poisson problem with steep gradients and the results are
compared with the threshold-based methods described in [16]. Next, these methods are applied to a
2D reduced model of the incompressible, resistive magnetohydrodynamic (MHD) equations. These
equations are used to simulate instabilities in a large aspect-ratio tokamak. We show that, by using
the new ALR strategies on this system, we are able to resolve the physics using only 10 percent of
the computational cost used to approximate the solutions on a uniformly refined mesh within the
same error tolerance.
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1. Introduction. Adaptive finite element methods (AFEMs) are being used ex-
tensively to approximate solutions of partial differential equations (PDEs) containing
local features; see, e.g., [18, 26, 31, 16, 3]. Consider a partial differential equation
(PDE), or a system of PDEs, written abstractly as

Pw = f in Ω ⊂ Rd, (1.1)

with appropriate boundary conditions. Let T be a regular partition [7] of the domain,
Ω, into elements. Define the mesh size, h = max{diam(τ), τ ∈ T }. In general, the
refinement process starts on a coarse grid, T0 (level = 0), and iteratively refines and
approximates the PDE on levels ℓ = 1, 2, ... until the error satisfies a certain criteria.
At each level, some elements are refined in h by splitting them into sub-elements,
and some are refined in p by increasing the element order. In [22, 23], this concept is
described in the following form:

Solve → Estimate → Mark → Refine. (1.2)
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One goal of adaptive refinement is to construct a sequence of nearly optimal grids,
meaning that a certain error is achieved with a minimum number of elements (or
degrees of freedom (DOF)). In one dimension, it has been proved that this is accom-
plished by equally distributing the error over all elements; [18]. It is believed that
this also holds for higher dimensions. Based on this premise, a simple method to
mark element for refinement was introduced by Babuška [18]: an element is marked
for refinement if its local error is within a certain factor of the largest local error at
that level. In [16], a more complicated algorithm was proposed:

ALGORITHM 1 (Threshold-based Marking). Given a parameter 0 < f ≤ 1,
construct a minimal subset T̂ of T such that

∑

τ∈T̂

ǫ2τ ≥ f
∑

τ∈T

ǫ2τ , (1.3)

and mark all elements in T̂ for refinement.

The AFEMs in [22, 23] start with this approach, then further mark elements
based on oscillation terms. This marking approach often produces satisfactory results.
With a proper choice of f , one can establish the convergence of the AFEM as well as
optimality of the finest grid. However, the real computational cost was not addressed.
Also, the proper choice of f is different for various problems and unknowns a priori.
In order to achieve the optimal grid with the least amount of work, we expect that
the value of f would require freedom for it to change on each level. We may need to
refine a large fraction of elements at the coarser levels when the grids are too coarse
to resolve the local features of the solution. Then, at intermediate levels, refinement
should concentrate on the elements containing relatively large error. Lastly, at finer
levels, once the error is equally distributed, near global refinement is preferred.

A new approach, described in [6], was developed to address this issue. The algo-
rithm refines elements that minimize a ‘work-times-error-reduction’ efficiency factor
(WEE) at each refinement level. Later, in [15], it was shown that the WEE algorithm
was inefficient for problems with spatial dimension, d, less than the polynomial de-
gree, p, of the finite element space. Another algorithm, which determined the fraction
of elements to be refined, r, by optimizing the ‘accuracy-per-computational-cost’ ef-
ficiency factor (ACE) was proposed and analyzed mainly in one dimension [15]. The
results show that the ACE algorithm is capable of effectively and efficiently detecting
the solution’s local features. In this paper, we extend the ACE algorithm to two and
three dimensions for first-order system least-square (FOSLS) finite element methods.
The resulting linear systems are solved using algebraic multigrid (AMG) in the con-
text of nested iteration (NI). Two variations of the ACE algorithm are also proposed.
The first requires a fixed increase of DOF. The second forces a fixed anticipated error
reduction. This is similar to the threshold-based refinement algorithm except that an
element is allowed to be refined more than once at a single level. Finally, another algo-
rithm, which minimizes the ‘anticipated-overall-computational-work’ efficiency factor
(NACE) is developed.

NI-FOSLS-AMG yields measures that allow us to estimate the anticipated error
reduction and computational cost, which can be used to make the refinement deci-
sions based on optimizing computational efficiency. The performance of the efficiency-
based adaptive refinement algorithm, applied to NI-FOSLS-AMG, is compared for a
2D Poisson problem with steep gradients and a time-dependent nonlinear magneto-
hydrodynamics (MHD) problem. The numerical results show that all of the ACE
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algorithms used with NI-FOSLS-AMG are capable of approximating the solutions
within the same error tolerance with much less computational cost than the threshold-
based refinement and uniform refinement. Although we propose the efficiency-based
refinement algorithms for the NI-FOSLS-AMG approach, they can also be applied to
other FEMs and linear solvers, provided that a locally sharp and globally reliable a
posteriori error estimator is available.

This paper is organized as follows. In Section 2, the basic concepts of the NI-
FOSLS-AMG approach are described. The notation used in this paper is also intro-
duced. The efficiency-based refinement strategies are described in Section 3. Then,
the performance of the ACE and NACE type strategies for the 2D test problems
are discussed in Section 4. Next, in Section 5, results on convergence of adaptive
refinement for FOSLS are discussed. Section 6 describes how the efficiency-based
refinement strategies can be implemented in parallel. Finally, conclusions are formu-
lated in Section 7.

2. Preliminaries. In this section, we briefly describe the basic concepts behind
the NI-FOSLS-AMG approach and introduce notations used in the rest of the paper.

2.1. FOSLS methodology. First-order system least squares (FOSLS) is a spe-
cial type of finite element method that reformulates a PDE as a system of first-order
equations and poses the problem as a minimization of a functional. Here, the first-
order differential terms appear quadratically and, thus the functional norm is equiva-
lent to a norm meaningful to the problem. To illustrate the basic concepts of FOSLS,
consider the PDE written abstractly in (1.1). Introducing new variables, we arrive at
a first-order system:

Liu = fi, i = 1, 2, ..., M. (2.1)

Assuming fi ∈ L2(Ω), consider the associated FOSLS functional given by

G(u, f) =

M
∑

i=1

||Liu− fi||20,Ω, (2.2)

where ||u||0,Ω =
√

∫

Ω |u|2 is the L2-norm. The minimization problem is

u = argmin
v∈V

G(v; f). (2.3)

Here, V is an appropriate Hilbert space, usually (equivalent to) a product of H1

spaces. In many cases, under general regularity assumptions, G(u; f) is “elliptic” with
respect to the V norm; see, e.g., [11, 12]. That is, its homogeneous part, G(v; 0), is
equivalent to the squared V norm:

c1 ≤ G(v; 0)

||v||2V
≤ c2 (2.4)

for some positive constants c1 and c2 and for every v ∈ V . This ellipticity enables
the existence and uniqueness of the solution u. Let Vh ⊂ V be a finite-dimensional
subspace of V , often it consists of continuous piecewise polynomials. Note that the
discretization can be written as the minimization problem

uh = arg min
v

h∈Vh
G(vh; f). (2.5)
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Well-posedness of (2.5) follows directly from the ellipticity. Therefore, the FOSLS
formulation is not restricted by any LBB condition. While not a necessary condition,
if V is a product of H1 spaces, then ellipticity also enables an optimal multigrid solver
of the discrete system [12], that is, standard multigrid solvers converge with factors
bounded uniformly in mesh size, h.

The introduction of the new dependent variables increases the number of DOF,
much like mixed finite element methods. However, unlike mixed methods, FOSLS
yields a symmetric positive definite algebraic system that is, in general, more amenable
to multilevel solution techniques.

2.2. A Sharp and Reliable A-posteriori Error Estimate. The FOSLS
functional provides a unique capability for adaptive refinement: an effective error
indicator at no additional computation cost. Because the functional value is zero at
the solution, the FOSLS functional itself is a measure of the total error in a given ap-
proximation. It provides both absolute and relative error measures, as well as global
and local error estimates, that are much simpler and potentially sharper than con-
ventional error estimators. To illustrate this, for any element τ ∈ T , define the local
FOSLS functional

Gτ (uh; f) =

M
∑

i=1

||Liu
h − fi||20,τ . (2.6)

Writing ǫτ =
√

Gτ (uh; f), the ellipticity in (2.4) implies that

1

c2
ǫ2τ =

1

c2
Gτ (uh − u; 0) ≤ ||uh − u||2V,τ (2.7)

and

||uh − u||2V ≤ 1

c1
G(uh − u; 0) =

1

c1

∑

τ∈T

ǫ2τ . (2.8)

An error estimator, ǫτ , that satisfies an inequality of type (2.7) is called locally sharp.
It implies that if ǫτ is large, then the error is large within that element. In the
literature, an inequality of type (2.8) is called a reliability bound; see [31]. Note that
a small sum of local estimators, ǫτ , implies a small global error.

2.3. Nested Iteration and Algebraic Multigrid. Nested iteration (NI), or
full-multigrid [10] (FMG) as it is called in the multigrid context, involves starting the
solution process on a relatively coarse grid, where the computational cost is relatively
cheap. The solution on the coarse grid is used as an initial guess for the problem
on the next finer grid. Since the objective on each grid is to minimize the FOSLS
functional, the coarse-grid solution should provide a good starting guess. On each
refinement level, solving discrete minimization problem (2.5) involves fast iterative
solvers applied to the matrix equations. If the FOSLS functional is equivalent to a
product H1 norm, then there exists an optimal multilevel solution algorithm [32].
Experience shows that, in this context, AMG also yields an approximate solution
to the discrete equations associated with quasi-uniform grids in optimal time with
convergence factor, ρ, bounded uniformly below 1, independent by mesh size h. AMG
methods, together with the NI strategy and local refinement, provide a powerful
approach for approximating solutions of PDEs. Numerical and theoretical results
confirm that the overall cost of such a scheme resides predominantly in the cost of
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the finest-level processing. The total cost is usually cheaper than solving the problem
directly on the finest grid, which generally is not even known in advance.

The NI strategy presents a special opportunity for AMG methods. In general,
AMG requires a substantial setup phase. The NI approach with local refinement
yields a hierarchy of quasi-nested block-structured grids, that is, the coarsest grid may
be irregular, but subsequent grids are increasingly more structured. This hierarchy,
together with AMG, may reduce or eliminate the need for a setup phase at each level.
This will be investigated in future work.

2.4. Refinement. In this section, we discuss the method for subdividing ele-
ments into subelements. The FOSLS methodology allows us to use simple bisection
of elements. Here we describe the algorithm in the context of quadrilaterals in two
dimensions and hexahedral elements in three dimensions. The quadrilateral elements
are partitioned into four sub-elements of equal area, and the hexahedral elements are
partitioned into eight sub-elements of equal volume. In the AFEM context, trian-
gles (tetrahedron in three dimensions) are often employed as finite elements, which
requires more attention in the subdivision stage to ensure conforming elements. The
newest vertex routine in conjunction with simple bisection is often used there; see [23].
Although the simple methods we employ produce hanging nodes, the FOSLS method
handles this situation easily. Hanging nodes are nodes along element edges or faces, in
which the edge or face is shared by multiple elements, and the nodes are not defined
for some elements; see Fig. 2.1. If conforming elements for FOSLS discretization are

(a) Possible grid after refinement without clean-
up stage

(b) grid after a clean-up stage is used to maintain
2-to-1 balance

Fig. 2.1. A mesh resulting in slave nodes and master nodes; the red solid circle marks slave
nodes, the blue solid circle marks master nodes. The arrows represent explicit correlations between
slave and master nodes.

desired, each slave node is dependent on its master nodes at the endpoints of the edge
or the face on which it is hanging through an explicit algebraic constraint. Explicit
correlations between slave nodes and master nodes are established, see Fig. 2.1(b).

Although not required for FOSLS convergence, we perform an additional clean-up
stage in our implementation so that two adjacent elements sharing an edge or a face
should not differ in edge size by a factor greater than 2. Such a constraint is often
referred to as the balance condition or 2-to-1 balance constraint [30, 29]. This clean-
up stage helps to minimize the number of slave nodes, which can in turn improve
AMG convergence. Also, it helps track local features that are not stationary during
a time-dependent simulation.
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Remark. Although not pursued here, FOSLS is particularly amenable to non-
conforming finite element spaces. See Bernt’s lemma (Theorem 5.2) [5]

3. Efficiency-based Adaptive Local Refinement for NI-FOSLS-AMG.

Recall that the goal of efficiency-based refinement strategies is to reach a certain error
tolerance with the least amount of computational cost. Given a potential refinement
strategy, one needs to estimate

• the reduction in the functional norm of the error and
• the computational cost of solving the resulting system of equations.

These estimates are established in the next two sections.

3.1. FOSLS Approximation Heuristics. Assume the solution space, V , is a
product of H1(Ω) Sobolev spaces. For any tessellation, Th, with mesh size, h, let Vh

be the finite-dimensional subspace consisting of continuous piecewise polynomials of
degree p. Define Ihu to be the interpolant of the exact solution, u, into the subspace
Vh. Then, there exists a constant, C, independent of u, such that

||Ihu− u||1 ≤ Chs|u|s+1 (3.1)

for 0 < s ≤ p. Here, || · ||1 is the H1(Ω)-norm and | · |s+1 is the Hs+1(Ω) semi-norm,
(c.f.[7]). We further assume that the solution, u, is smooth enough, i.e., u ∈ Hp+1(Ω),
so that (3.1) is valid for s = p. The following error bound is used to estimate the
functional reduction:

G(uh; f) :=
∑

τ∈Th

Gτ (uh; f) ≤
∑

τ∈Th

Gτ (Ihu; f)

≤ c2||Ihu− u||21
≤ c2C

2h2p|u|2p+1.

(3.2)

Similar bound holds for the local interpolate error:

ǫ̂2τ := Gτ (Ihu; f) ≤ Dh2p
τ |u|2p+1,τ

≤ Dh2p
τ Mp+1,τHτ ,

(3.3)

where D is independent of u and hτ , Hτ is the area of element τ , and Mp+1,τHτ

is a bound on |u|2p+1,τ . We assume that D and Mp+1,τ are relatively constant over

element τ . Moreover, we assume Ihu is close enough to uh so that bound (3.3) holds
for local FOSLS functionals:

ǫ2τ := Gτ (uh; f) ≈ Gτ (Ihu; f) ≤ Dh2p
τ Mp+1,τHτ . (3.4)

Modifications of the assumptions might be necessary for certain situations, for exam-
ple, when the solution contains a singularity (c.f. [15]) or the grid is not fine enough
to resolve features of the solution. In such cases, these assumptions can be adaptively
monitored so that run-time adjustments can be made.

If element τi is split in two in each dimension, then we have 2d new elements
τi,1, ..., τi,2d in Rd. Using (3.4) as an asymptotic bound, we can estimate the local
functional after refinement:

2d

∑

j=1

ǫ2τi,j
≈ D(

hτi

2
)2pMp+1,τi

Hτi

2d
2d ≈ 1

22p
ǫ2τi

. (3.5)
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Next, assume that the error is equally distributed among τi,j , which yields

ǫ2τi,j
≈

(

1

22p+d

)

ǫ2τi
. (3.6)

To give a little insight as to what this means, suppose quadratic elements are used in
R

2. Then the functional in each child element should be about 1
64 of its parent. If we

allow an element to be refined twice, its grand-children are expected to have a local
functional of about 1

4096 of its grandparent. This suggests local errors can be reduced
quickly and equally distributed if multiple refinements are correctly implemented.

3.2. Work estimate for NI-AMG. Here, we develop a procedure to estimate
the computational work depending on the refinement decision made at each level. Let
ℓ denote the refinement level, with ℓ = 0 the coarsest and ℓ = L the finest grid. We
make the following level-dependent definitions:

• Nℓ =number of elements at level ℓ;
• Gℓ(u

h; f) = FOSLS functional at level ℓ;
• ǫ2i = Gℓ,τi

(uh; f) = local functional on each element, τi, at level ℓ;

• Mℓ(u
h; f) =

√

Gℓ(uh; f) = error at level ℓ.
The algorithm works by initially ordering the elements at level ℓ so that

ǫ21 ≥ ǫ22 ≥ ... ≥ ǫ2Nℓ
. (3.7)

Let r ∈ [0, 1] be the fraction of elements to be refined versus the total number of
elements. Define Eℓ(r), the associated fraction of functional to be refined; that is,

Eℓ(r) =

∑

i≤rNℓ
ǫ2i

∑Nℓ

i=1 ǫ2i
. (3.8)

The functional distribution function, Eℓ(r), is monotonically increasing and concave
down from Eℓ(0) = 0 to Eℓ(1) = 1, that is, E′

ℓ(r) ≥ 0 and E′′
ℓ (r) ≤ 0. The derivative

E′
ℓ(0) can be used to indicate whether the functional is equally distributed. If it is

large, then the functional is dominant in the first few elements. For example, in Fig.
(3.2), when the error is dominated in the first two elements, the derivative at r = 0
is much greater than 1.

The algorithm allows an element to be refined more than once at each level.
Let ri ∈ [0, 1] be the fraction of elements to be refined i times at level ℓ. Let m
be the maximum refinements allowed on a single level. Writing r = (r1, r2, ..., rm)
and combining the functional distribution (3.8) and the functional reduction heuristic
(3.5), we estimate the functional reduction as a function of r:

γℓ(r) = 1 − Eℓ(r1) +

m−1
∑

k=1

1

22kp
[Eℓ(rk+1) − Eℓ(rk)] +

1

22mp
Eℓ(rn). (3.9)

For the work required to achieve this reduction, the main concern is the increase
in the DOF. Assuming simple bisection of the elements, the anticipated increase in
DOF is easily computed. We have

Nℓ+1 ≃ ηℓ(r)Nℓ, (3.10)

where

ηℓ(r) = 1 − r1 +
m−1
∑

k=1

2kn(rk+1 − rk) + 2mdrm. (3.11)
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Fig. 3.1. Fraction of functional versus the fraction of elements to be refined.

Assume that the AMG convergence factor is bounded by 0 < ρ < 1 uniformly in
mesh-size. This value can be determined dynamically during computation. We fur-
ther assume that, at each level, AMG V-cycles are applied until the discretization
error, Mℓ(u

h; f), is resolved. Then, the anticipated number of V-cycles, κℓ+1(r), is
determined by

ρκℓ+1 ≥ Mℓ+1

Mℓ

=
√

γℓ(r)). (3.12)

Solving for κℓ+1 gives

κℓ+1(r) =

⌈

1

2

log γℓ(r)

log ρ

⌉

. (3.13)

In a real simulation, a certain number of V-cycles are needed to extrapolate the
discretization error. Denoting this number by ncycmin, we have

κℓ+1(r) = max

(⌈

1

2

log γℓ(r)

log ρ

⌉

, ncycmin

)

. (3.14)

Now, the work on the next level ℓ + 1 is given by

Wℓ+1(r) = [C0 + c1κℓ+1(r)] × Nℓ+1 = [C0 + c1κℓ+1(r)] × ηℓ(r) × Nℓ, (3.15)

where C0 and c1 represent the respective set-up cost and cost factor for a V-cycle.

3.3. Efficiency-based Algorithms. Let ET = GL

G0
be the desired total factor of

reduction from the initial functional. We wish to find an overall refinement strategy
that minimizes the total work required to achieve a reduction of the functional by the
factor ET . That is, we want to find a sequence, {rℓ}..., to minimize the total work:

WT =

L
∑

ℓ=1

Wℓ with

L−1
∏

ℓ=0

γℓ = ET . (3.16)

Here, Wℓ is the work at level ℓ and γℓ is the functional reduction between level ℓ
and ℓ + 1. Several difficulties arise in the solution of such a minimization problem.
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The choice of rℓ depends on the functional distribution, Eℓ, which is unavailable
before refinement is performed at level ℓ. We can estimate the distributions at finer
levels based on heuristics (3.5) and the functional distribution at coarser levels. Such
estimates are often not accurate enough, especially when the grid is not fine enough
to resolve the solution.

Our first approach to (3.16) is based on local optimization at each level ℓ. Define
the effective functional reduction measure as follows:

γℓ(r)
1

Wℓ+1(r) . (3.17)

The ACE algorithm, first developed in [15, 24], marks elements for refinement based
on minimizing the anticipated effective functional reduction.

ALGORITHM 2 (ACE). At level ℓ, order the elements so that

ǫ21 ≥ ǫ22 ≥ ... ≥ ǫ2Nℓ
.

Allow m-multiple refinements, e.g., m = 1, 2, 3. Let r = (r1, r2, ..., rm) with 0 ≤ rm ≤
... ≤ r1 ≤ 1. Find

ropt = argmin
r

γℓ(r)
1

Wℓ+1(r) , (3.18)

or

ropt = arg min
r

log γℓ(r)

Wℓ+1(r)
. (3.19)

Then, refine the first ⌈riNℓ⌉ elements i times, i = 1, 2, ..., m.

In some instances, however, the ACE algorithm only refines a few elements. This
may be optimal for the move from grid ℓ to grid level ℓ + 1, but, if this happens at
all levels, then the total work (3.16) will be unnecessarily large. Although C0 and ρ
are factored into the algorithm, the above behavior may occur if ρ is very close to 1.0
and C0 is not large relative to the cost of one V-cycle. Furthermore, if elements are
allowed to be refined more than twice, finding ropt can be expensive at finer levels.
One modification that reduces this expense is the use of bins, which we discuss in
Section 6.

Below, we propose three variations of the ACE algorithm. The first two, ACE-
DOF and ACE-Reduc, enforce fixed increase in the DOF and a fixed reduction of the
functional, respectively. The third algorithm, NACE, attempts to optimize (3.16).
Numerical results in Section 4 indicate that all the ACE algorithms used with NI-
FOSLS-AMG are able to approximate the solutions to the same accuracy with much
less computational cost than the threshold-based refinement and uniform refinement.

As indicated above, the algorithm ACE-DOF has the goal of forcing ACE to refine
a certain number of elements such that the number of elements at the next level is a
prescribed factor of the number that would result from performing a single refinement
globally.

ALGORITHM 3 (ACE-DOF). On level ℓ, order the elements so that the local
functional is decreasing. Assume m ≥ 2. Given a parameter 1 < θDOF ≤ (2d)m.
Find

ropt = argmin
r

log γℓ(r)

Wℓ+1(r)
with ηℓ(r) ≃ θDOF . (3.20)
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In particular, one can choose θDOF = 2d such that the number of elements at
next level is the same as the number that would result from a single global refinement.

The second variation finds the optimal faction, ropt, by fixing the anticipated
functional reduction such that it is a prescribed factor of the anticipated functional
reduction that would result from a single global refinement.

ALGORITHM 4 (ACE-Reduc). At level ℓ, order the elements so the local
functional is decreasing. Assume m ≥ 2. Given a parameter ( 1

22p )m ≤ θReduc < 1.
Find

ropt = arg min
r

log γℓ(r)

Wℓ+1(r)
with γℓ(r) ≃ θReduc, (3.21)

or

ropt = arg min
r

Wℓ+1(r) with γℓ(r) ≃ θReduc. (3.22)

All of the above algorithms are developed based on local optimization between two
consecutive levels. Of course, this does not guarantee global optimization. We also
devise a marking algorithm that minimizes the ‘anticipated-overall-computational-
cost’ efficiency, as defined in (3.16), (which we call NACE). Let

ǫT,ℓ =
GL

Gℓ

(3.23)

be the overall functional reduction needed from the current functional to the desired
tolerance. Let

Kℓ(r) = ⌈ log (ǫT,ℓ)

log (γℓ(r))
⌉. (3.24)

In order to obtain GL, we repeat γℓ(r) reduction Kℓ(r) times. The anticipated total
work to accomplish this is

WT,ℓ(r) = [C0 + c1κℓ+1(r)]
(

ηℓ + η2
ℓ + ...η

Kℓ(r)−1
ℓ

)

Nℓ

= [C0 + c1κℓ+1(r)]

(

ηℓ(r)
Kℓ(r) − 1

)

ηℓ(r) − 1
Nℓ,

(3.25)

where κℓ+1(r), the anticipated number of V-cycles associated with reduction γℓ(r), is
defined in (3.14). Now, the NACE algorithm is described.

ALGORITHM 5 (NACE). At level ℓ, order the elements so that the local func-
tional is decreasing. The refinement decision is made by finding ropt to minimize the
estimated remaining total work, (3.25). This is equivalent to finding

ropt = argmin
r

log

(

(C0 + c1κℓ+1(r))
ηℓ(r)

Kℓ(r) − 1

ηℓ(r) − 1

)

, (3.26)

where κℓ+1, ηℓ, and Kℓ are given by (3.14), (3.11), and (3.24), respectively.

While this algorithm cannot guarantee optimal work as defined in (3.16), it attempts
to take into consideration the total work required on all remaining levels.
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4. Numerical Results. In this section, we explore the use of the proposed
efficiency-based ALR algorithms in two spatial dimensions. The algorithms are first
applied to a Poisson problem with steep gradients. With comparisons to uniform
refinement and threshold-based (bulk-chasing) refinement, which we have called Al-
gorithm 1, we show that the efficiency-based algorithms are capable of capturing the
error generated at the steep gradients with much less work than the threshold-based
refinement methods.

Next, we investigate a time-dependent nonlinear MHD test problem to show
that the efficiency-based ALR methods work well with the NI-Newton-FOSLS-AMG
method. Qualitatively, the test results demonstrate that within the NI-Newton-
FOSLS-AMG framework, all efficiency-based methods resolve the physical features
with much less work than global refinement. Moreover, for all test problems, the
efficiency-based methods yield a sequence of meshes that equally distribute the func-
tional across elements on relatively coarse levels. This is further discussed in Section
6. All tests are implemented using the First-Order System PACKage (FOSPACK
[27]).

4.1. Poisson Equation. Consider the Possion problem on the unit square, Ω =
(0, 1) × (0, 1),

{

−∆p = f(x, y) in Ω,

p = g on ∂Ω,
(4.1)

with Dirichlet boundary condition. The equivalent first-order system we study here
is



































−∇ · U = f in Ω,

U = ∇p

∇× U = 0

p = g on ∂Ω,

τ · U =
∂g

∂τ
,

(4.2)

where U is a vector of auxiliary unknowns and τ is the unit vector tangent to ∂Ω.
H1-ellipticity of the corresponding FOSLS functional is shown in [12].

4.1.1. Test Problem: Steep Gradients and Flats. Define the function

p1(r, θ) =











1 r ≤ 0.7,

h1(r) 0.7 ≤ r ≤ 0.8,

0 r ≥ 0.8,

(4.3)

where (r, θ) is the polar coordinate centered at the origin and h1 is a unique degree 7
polynomial such that p1 ∈ H4(Ω). Similarly, define the function

p2(r
′, θ′) =











2 r′ ≤ 0.7,

h2(r
′) 0.7 ≤ r′ ≤ 0.8,

0 r′ ≥ 0.8,

(4.4)

where (r′, θ′) is the polar coordinate centered at (1, 0).
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Fig. 4.1. Exact solution

The right-hand side, f , and boundary data, g, are chosen such that the exact
solution is given by

p(x, y) = p1(x, y) + p2(x, y). (4.5)

The 3D plot of p displayed in Fig. 4.1 shows a large gradient within two thin strips
with constants elsewhere. For a given mesh size and approximation order, the error
should be relatively large in the thin strips. To get an accurate approximation, the
refinement algorithm needs to concentrate elements here to effectively resolve these
gradients.

4.1.2. Test results. All ACE algorithms are applied to test problem (4.1) with
bi-quadratic elements. Refinement stops when the functional is reduced by a factor
of 10−7. Elements are allowed to be refined at most twice at each level. The finest
grids and functional distribution are depicted in Fig. 4.2. They are consistent with
the anticipated mesh because the finest resolution encompasses the strips containing
the large gradient. Furthermore, we see that all schemes result in equal distribution
of error on the finest grids. Only a small fraction of elements contain large local error,
marked as red.

To investigate the behavior of each scheme, we tabulate various relevant values
with respect to each refinement level. These results are given in Tables 4.1, 4.2, 4.3,
and 4.4. All schemes work as expected. A large fraction of elements are refined at the
initial levels when grids are too coarse to resolve features of the solution. Then, at the
intermediate levels, once local features of the solution are exposed, a small fraction
of elements that contain large local error are refined. Later, at finer levels, since
error is fairly equally distributed, a large fraction of elements are refined once again.
Furthermore, the last column in each table shows that the anticipated functional
reduction, γℓ, provides an accurate estimate to the actual reduction at finer levels.
This verifies that FOSLS approximation heuristics derived in section 3.1.

Next, to demonstrate the efficiency of each scheme, we compute the total compu-
tational cost in terms of a work unit (WU) on the finest grid, defined as the amount of
computation required to perform one matrix vector multiplication on the finest grid.
The total computational cost is, then, given in terms of the total work units (TWU):

TWU =

∑L

ℓ=1(C0 + ncycℓ) × (ν1 + ν2) × σℓ × nnzℓ

nnzL

. (4.6)

Here, ν1 and ν2 are the number of pre- and post-relaxations, respectively, σℓ is the
operator complexity of the AMG solver at level ℓ, nnzℓ is the number of nonzeroes
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(a) ACE: mesh after nine levels of refinement (b) ACE-DOF: mesh after six levels of refinement

(c) ACE-Reduc: mesh after eight levels of re-
finement

(d) NACE: mesh after five levels of refinement

Fig. 4.2. Locally-refined meshes and functional distribution

at level ℓ, and C0 is defined as the set up cost in terms of the cost of a single V-
cycle on level ℓ. For this test problem, V (1, 1)-cycles are employed and the set up
cost is proportional to 30.0 V-cycles. Results show that the total work to solve the
linear systems throughout all levels is about 22 work unit, and the total set up cost
is between 158 and 173 work units. To illustrate what these numbers mean, we take
the finest grid resulting from the original ACE, set up the FOSLS discrete problem,
and solve it using AMG with a zero initial guess. The results in Table. 4.5 show that
the NI-FOSLS-AMG-ACE method requires only about 137% of the work of solving
the problem directly on the same finest grid.

Next, we see from Table. 4.4 that the NACE scheme takes the least levels of
refinement to reach the error tolerance due to a lot more double refinements. This
may lead to possible over-refinement and less accurate grids, which is indeed the case;
see Fig. 4.3(a), where the functional-versus-number-of-elements curve and work units
are depicted. The convergence rates of ACE, ACE-DOF, and ACE-Reduc approach
the optimal rate of quadratic elements, while the convergence rate of the NACE
scheme is slightly slower. Double refinements also have the potential of introducing
more nonzeroes in the resulting matrices, e.g., the NACE scheme results in more
nonzeroes in the finest-grid matrix than ACE and ACE-Reduc, but less elements.
To compare the computational work required to reach a certain functional value,
we compute the work units in terms of relaxation on the finest grid of ACE, which
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ℓ Gℓ Nℓ nnzℓ r1 r2 E(r1) E(r2) ηℓ ncyc γest(γact)

1 1.37e+5 16 9,801 63% 0.00% 96% 00% 2.87 4 0.10(0.49)
2 6.70e+4 46 29,709 52% 0.00% 98% 00% 2.56 4 0.08(0.42)
3 2.85e+4 130 84,277 52% 0.00% 99% 00% 2.57 4 0.07(0.19)
4 5.49e+3 364 234,237 56% 0.55% 98% 16% 2.74 4 0.07(0.11)
5 5.92e+2 1,114 664,061 53% 2.33% 98% 46% 2.88 4 0.05(0.09)
6 5.48e+1 3,505 2,093,261 34% 0.63% 92% 28% 2.09 4 0.12(0.13)
7 7.33e+0 7,756 4,595,173 34% 0.04% 91% 02% 2.02 4 0.15(0.15)
8 1.14e+0 16,213 9,531,203 69% 0.12% 98% 06% 3.09 4 0.08(0.08)
9 1.01e-1 51,157 29,884,277 82% 0.27% 99% 09% 3.50 4 0.07(0.07)
10 7.62e-3 181,633 105,595,645

Table 4.1
ACE, σL = 1.899, set up 171.804 WU, solve 22.907 WU.

ℓ Gℓ Nℓ nnzℓ r1 r2 E(r1) E(r2) ηℓ ncyc γest(γact)

1 1.37e+5 16 9,801 81% 6.25% 98% 29% 4.19 4 0.06(0.42)
2 5.77e+4 67 41,873 60% 10.45% 99% 59% 4.04 4 0.03(0.25)
3 1.44e+4 298 184,313 59% 10.40% 99% 82% 4.01 4 0.02(0.05)
4 6.99e+2 1,333 809,373 64% 9.00% 99% 76% 4.00 4 0.02(0.02)
5 1.60e+1 5,920 3,573,901 70% 7.62% 99% 49% 4.00 4 0.04(0.05)
6 7.84e-1 25,153 15,128,019 80% 5.01% 99% 47% 4.00 4 0.04(0.04)
7 3.12e-2 103,444 61,036,269

Table 4.2
ACE-DOF, σL = 1.983, set up 160.695 WU, solve 21.426 WU.

ℓ Gℓ Nℓ nnzℓ r1 r2 E(r1) E(r2) ηℓ ncyc γest(γact)

1 1.37e+5 16 9,801 100% 0.00% 100% 00% 4.00 4 0.065(0.48)
2 6.60e+4 64 38,025 47% 1.56% 99% 13% 2.59 4 0.065(0.39)
3 2.59e+4 169 102,677 46% 1.18% 99% 14% 2.52 4 0.065(0.13)
4 3.24e+3 472 284,901 57% 1.27% 99% 11% 2.86 4 0.065(0.07)
5 2.39e+2 1,492 888,377 58% 1.14% 99% 17% 2.86 4 0.065(0.09)
6 2.16e+1 4,627 2,741,061 60% 0.63% 98% 22% 2.87 4 0.065(0.09)
7 1.95e+0 13,849 8,169,677 70% 0.86% 98% 27% 3.20 4 0.065(0.08)
8 1.52e-1 45,448 26,632,607 81% 0.51% 99% 17% 3.49 4 0.065(0.07)
9 1.06e-2 160,897 93,704,707

Table 4.3
ACE-Reduc, σL = 1.994, set up 173.298 WU, solve 23.106 WU.

ℓ Gℓ Nℓ nnzℓ r1 r2 E(r1) E(r2) ηℓ ncyc γest(γact)

1 1.37e+5 16 9,801 100% 50% 100% 93% 10.00 4 0.010(0.228)
2 3.11e+4 160 104,967 46% 23% 99% 86% 5.16 4 0.014(0.095)
3 2.96e+3 958 653,599 72% 29% 99% 97% 6.63 4 0.006(0.008)
4 2.45e+1 6,868 5,511,917 36% 01% 97% 50% 2.18 4 0.061(0.065)
5 1.59e+0 15,277 12,768,435 56% 55% 95% 95% 9.18 4 0.057(0.029)
6 4.58e-2 153,064 108,988,185

Table 4.4
NACE, σL = 2.220, set up = 158.112 WU, solve 21.082 WU.
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Method Setup Cost ncyc Solve Cost Total Work

NI-FOSLS-AMG-ACE 171.80 4 22.91 194.71

FOSLS-AMG 113.94 10 37.98 141.92
Table 4.5

Comparison of NI-FOSLS-AMG-ACE and applying FOSLS-AMG directly to the finest-grid,
ncyc is the number of V-cycles used on the finest grid.
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Fig. 4.3. Comparison of all ACE schemes, where a work unit is defined as the cost of one
matrix vector multiplication on the finest grid of ACE.

contains 105,595,645 nonzeroes. The ACE scheme (and its two variations) results in
smaller functional values compared with the NACE scheme. It appears that, for this
test, when the work units equal 180, the functional resulting from NACE is almost
an order of magnitude larger than the functional using the ACE scheme, as seen in
Fig. 4.3(b).
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Fig. 4.4. Comparison of threshold-based schemes with refinement of 40, 60, and 90 percent of
the functional at each level, and the ACE scheme.

We conclude our analysis of the Poisson equation by comparing the original ACE
algorithm with the threshold-based marking scheme (1.3). Three threshold-based al-
gorithms that refine 40, 60, and 90 percent of the functional at each refinement level
are considered. Work units for Fig. 4.4(b) are defined as one relaxation on the finest
grid of ACE. It is shown in Fig. 4.4(a) that the convergence rate of ACE is the same
as the best convergence rate of the three threshold-based algorithm. For the same
amount of work, the ACE scheme results in the smallest functional value compared
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with the threshold-based schemes. For example, when work units = 200, ACE results
in functional one order of magnitude less than threshold-based refinement schemes.
This is expected since the ACE algorithm is based on optimizing computational effi-
ciency.

4.2. Magnetohydrodynamics. In this section, an incompressible, resistive mag-
netohydrodynamics (MHD) test problem is investigated. The results in [1, 2] shows
that methods such as nested iteration and first-order system least-squares are capable
of solving the nonlinear MHD systems in a minimal amount of work units. Here, the
various forms of adaptive mesh refinement described above are applied to a tokamak
test problem [13, 14, 25, 28]. A reduced set of MHD equations is obtained that models
a “large-aspect-ratio” tokamak, with non-circular cross-sections. The magnetic B-field
along the z-direction, or the toroidal direction, is very large and mostly constant. In
this context, we are able to look at plasma behavior in the poloidal cross-section. The
2D reduced model is described by the following equations:

1√
Re

∇× u−
√

Reω = 0, (4.7)

1√
Re

∇ · u = 0, (4.8)

1√
Re

∂u

∂t
− u × ω − j × B−

√

Re∇p +
1√
Re

∇⊥ω = f , (4.9)

1√
SL

∇× B−
√

SLj = 0, (4.10)

1√
SL

∇ · B = 0, (4.11)

1√
SL

∂B

∂t
+

1√
ReSL

(u · ∇B − B · ∇u) +
1√
SL

∇⊥j = g. (4.12)

The x-direction denotes the periodic poloidal direction in the tokamak, whereas the y
dimension represents a thin annulus in the poloidal cross section. In this 2D setting,
vorticity, ω, and current density, j, are both scalar variables. The remaining variables
are the fluid velocity, u, the fluid pressure, p, and the magnetic field, B. The equations
have been scaled using the Reynolds number, Re, which is the ratio of fluid speed to
viscosity, and the Lundquist number, SL, which is the ratio of fluid speed to magnetic
resistivity. This scaling produces a first-order system that is amenable to algebraic
multigrid methods in the FOSLS context, as shown in [1].

One important application of MHD physics is the study of instabilities that can
occur in tokamak fusion reactors. One such instability, the island coalescence problem,
is described below. The various ACE schemes are applied to see which one most
efficiently captures the magnetic reconnection that results from this instability.

4.2.1. Test Problem: Island Coalescence. This test problem simulates an
island coalescence in the current density arising from perturbations in an initial cur-
rent density sheet. A current density sheet in the toroidal direction of the tokamak
is perturbed, resulting in an instability that causes a reconnection in the magnetic
field lines and the merging of two islands in the current density field. This produces a
sharp peak in current density where the magnetic field lines reconnect. This region is
known as the reconnection zone, and the point at which the magnetic field lines break
is known as the X point. See [4, 20, 25] for more detail. We choose a low enough
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resistivity (i.e., Lundquist number above 50, 000) in order to observe the interesting
physics. For the following simulations, we define

Ω = [−1, 1]× [−1, 1],

Re = SL = 50, 001.

The initial conditions at equilibrium are

B0(x, y) =
1

cosh(2πy) + k cos(2πx)

(

sinh(2πy)
k sin(2πx)

)

, (4.13)

u0(x, y) = 0, (4.14)

ω0(x, y) = 0, (4.15)

j30(x, y) = ∇× B0 =
2π(k2 − 1)

(cosh(2πy) + 0.2 cos(2πx))2
, (4.16)

p0(x, y) =
(1 − k2)

2

(

1 +
1

(cosh(2πy) + 0.2 cos(2πx))2

)

, (4.17)

where k = 0.2. These initial conditions are perturbed away from equilibrium as
follows:

δB0(x, y) =





−ǫ 1
π

cos(πx) sin(π y
2 )

1
2ǫ 1

π
cos(π y

2 ) sin(πx)
0



 , (4.18)

δj30(x, y) = ǫ cos(π
y

2
) cos(πx), (4.19)

where ǫ = −0.01. The boundary conditions are periodic in x and Dirichlet for the
current density and vorticity on the top and bottom of the domain. We also have n ·u
and n ·B known on the top and bottom. Again, the FOSLS formulation, (4.7)-(4.12),
is H1 elliptic.

4.2.2. Results. The problem was run to time 8τA with a timestep of 0.1τA,
using a BDF-2 implicit time-stepping scheme. Here, τA is the time in Alfvén units.
It is the time needed for an Alfvén wave to travel across the domain [4, 28]. By this
time, the islands have coalesced and the large peak in current density has occurred
at the reconnection point. Using both uniform refinement and the ACE schemes, the
instability was captured. With ACE employed, the grids evolve over time to refine
in areas with steeper gradients. In this problem, as time progresses, a steep gradient
occurs at the reconnection point. This is seen in the bottom graph in Fig. 4.5. We
expect, then, that most of the refinement occurs in this region, which is indeed the
case. Next, a comparison of the 4 ACE schemes is done relative to uniform refinement.
The work at one time step is calculated by first determining the work of all the V-
cycles on a given refinement level for that particular scheme. These values, times the
number of matrix nonzeroes for the level, are then summed over all grids and divided
by the number of nonzeroes on the finest refinement level for the given problem. In
Table 4.6, the work unit values given are with respect to the finest level of the given
refinement scheme. They are an average over all time steps. To compare two schemes,
the average work unit value is multiplied by the fine-grid nonzeroes for that scheme
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Fig. 4.5. Numerical solution using 10 levels of adaptive refinement. SL = Re = 50, 001. Top
Left: Current Density at Time 4τA. Top Right: Current Density at Time 8τA. Bottom: Zoomed in
plot of current density peak at Time 8τA.

and then the ratio is taken. This ratio is defined as the Work Ratio in Table 4.6.
Similarly, the Element Ratio column is the ratio of elements on the finest grid of the
adaptive scheme compared to the number of elements on the finest grid of the uniform
scheme.

The results show that using adaptive refinement greatly reduces the amount of
work needed, compared to that of using uniform refinement. ACE requires 12% of the
work that uniform refinement requires. The physics is more localized in this problem,
especially by the time the reconnection begins to develop and, thus, the refinement
is more localized. It appears that, for this problem, ACE gives the best efficiency.
The functional is reduced to the same order of magnitude in all cases, but original
ACE needs less elements. The ACE-DOF and ACE-Reduc schemes appear to add
unnecessary elements just to get a certain total number or to reduce the functional
more than is needed. The NACE scheme also appears to oversolve. In this case,
the NACE scheme is performing many double refinements and, in fact, frequently
jumps the functional tolerance prescribed on many time steps. However, it is still on
par with the ACE-DOF and ACE-Reduc schemes. Qualitatively, all 4 ACE schemes
appear to capture the coalescence of the two islands.
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Uniform Ratio to Uniform
Work Units Avg Elements

80.473 13,380
ACE

Work Units Avg Elements Work Ratio Element Ratio
9.789 1,779.9 0.12 0.13

ACE-DOF
Work Units Avg Elements Work Ratio Element Ratio

29.610 3,040.7 0.37 0.23
ACE-Reduc

Work Units Avg Elements Work Ratio Element Ratio
23.513 3,083.0 0.29 0.23

NACE
Work Units Avg Elements Work Ratio Element Ratio

22.907 2,895.2 0.28 0.22
Table 4.6

Average number of work units per timestep using uniform refinement versus various ACE
refinement. All values are relative to finest grid of uniform refinement. A total of 45 time steps
were performed to compute the averages.

As a comparison to the threshold-based schemes described, the island problem was
also run using these schemes with values of 40, 60, and 80%, for the number of elements
to refine. Comparisons were made at various time steps throughout the run. While all
different schemes captured the qualitative behavior of the island coalescence problem,
the threshold schemes often required more elements and more work units to resolve
the problem to the same functional values. Figures 4.6 and 4.7 give a comparison of
the schemes for time step 20 (t = 2τA) and time step 80 (t = 8τA), respectively. These
figures show the relationship between number of elements on the finest grid versus
functional and the relationship between the number of work units and functional. At
time step 20, the solution is still rather smooth and ACE appears to get the optimal
grid, requiring less elements and less work units to get to the same functional value
as the threshold-based schemes. At time step 80, the reconnection has taken place
and steep gradients have developed. At this time, all schemes appear to require more
work and elements to resolve the physics. However, ACE is no worse than any of the
threshold-based schemes. While ACE picked the optimal refinement pattern from the
efficiency measures while running, the best threshold method required knowing the
correct percentage ahead of time.

5. Convergence Analysis. When devising a refinement scheme it is important
to consider the convergence. Recent theorems, proven in [21], address convergence for
local adaptive refinement in a FOSLS framework. Some quick notational background
is necessary to discuss FOSLS convergence. Note that G(uh; f) = G(E; 0), where
E = uh − u is the error. An F -orthogonal decomposition of E into F -harmonic and
F -local components is given by

E(x, y) = H + η.

See [21] for details. To formalize H and η, consider E− := E(x, y) restricted to the
refinement region, Ω−, and let H− and η− be the associated F -harmonic and local
error components, respectively. We define a set of local functions having support in
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Fig. 4.6. Comparison between ACE and threshold-based schemes at time step t = 2τA.

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

number of elements

fu
nc

tio
na

l

FOSLS functional versus number of elements, time = 80τ
A

 

 
ACE
Threshold 40
Threshold 60
Threshold 80

(a) Functional vs number of elements

0 100 200 300 400 500 600 700 800
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

work units

fu
nc

tio
na

l

fosls functional versus work units, time = 80τ
A

 

 
ace
threshold 40
threshold 60
threshold 80

(b) Functional vs work units

Fig. 4.7. Comparison between ACE and threshold-based schemes at time step t = 8τA.

the refinement region. We denote the complement of Ω− by Ω+. Define

V− := {u ∈ V : u = 0 on Ω+ ∪ Γ}.

Then,

η− := argmin
u∈V−

G(E − u; 0)

and

H− := argmin
u=E on Ω+∪Γ

GΩ−(u; 0).

This decomposition is relevant because error of type H− cannot be substantially
reduced even by infinite refinement.

Assume that the error in the refinement region satisfies a local saturation crite-
ria. This means that refinement reduces the F -local error component by a substantial
amount. The theory in [21] affirms that if enough of the total error resides in the
refinement region, the functional is reduced by a substantial amount, on that refine-
ment level. At present, we do not constrain our schemes to insure that we have enough
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error in the refinement region to satisfy the theory however, in practice, the scheme
typically choses a refinement region containing most of the error. This enables us
to qualify a certain confidence that our scheme is guaranteed to have level by level
convergence. In the future, we will explore the utility in determining this constraint
precisely.

6. Parallel Considerations. To accommodate the continual need for greater
computing power, it is imperative to implement NI-FOSLS-AMG and the efficiency-
based ALR algorithms in parallel for two- and three- dimensional problems. In this
section, the base parallel implementation is detailed. Clearly, a global sort of the
local functional values is not efficient, especially in a massively parallel environment.
To overcome this difficulty, a binning strategy is developed that first determines and
broadcasts the maximum local functional value over the entire domain, denoted by
ǫ2max. The algorithm establishes bins based geometrically on the maximum value and
the factor by which children elements are reduced. That is, in the two-dimensional
case mentioned above using bi-quadratic elements, the top bin consists of the range
[ǫ2max/64, ǫ2max] and the second bin consists of the range [ǫ2max/642, ǫ2max/64]. If an
element of the first bin is refined, its children are expected to land in the second
bin and so forth. Each processor establishes the number of elements and amount
of functional in each bin in its domain. This information is then distributed to all
processors by a global MPI Allreduce so that every processor has the total number
of elements and functional in each bin. Each bin is treated as an abstract element
in the efficiency-based formulas. This amounts to a piecewise linear approximation
of the functional distribution function, E(r), defined in (3.8). Finding the optimal r

is greatly simplified because of the smaller number of bins. If a bin is chosen to be
refined, then all elements of that bin are refined.

(a) Mesh
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(c) Functional distribution

Fig. 6.1. Mesh after nine levels of refinement, parallel ACE using geometric binning with single
refinement and bi-linear elements.

Preliminary results with this algorithm are very promising, as Fig. 6.1 shows. It
may be beneficial to coarsen the bins less aggressively, producing a finer approximation
of E(r). This remains for future research. Also, load balancing issues are important
for parallel adaptive methods (see, e.g., [3]). The load balancing algorithms based on
quadtree (octree) and space-filling curve described in [30] are being implemented in
the parallel FOSPACK code. Our philosophy is to get as much of the load balanced as
possible on coarser grids. Since our ACE algorithms concentrate on making the error
approximately equal across the elements, nearly global refinements are expected at
finer levels. This automatically ameliorates load balancing issues. Another difficulty
in parallel is to enforce the 2-to-1 balance refinement. To accomplish this, we choose to
balance the local mesh within each processor, followed by balancing the interprocessor
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boundaries using the ripple propagation algorithm [29, 30]. Currently, two types of
parallel AMG solvers are available in FOSPack: HYPRE’s BoomerAMG [17, 19] and
the parallel smoothed aggregation multigrid package parSAMIS, developed at the
University of Colorado at Boulder.

7. Conclusions. In this paper, efficiency-based refinement algorithms for the
FOSLS finite element method with algebraic multigrid solvers in the context of nested
iteration (NI-FOSLS-AMG) are developed. The algorithms choose which elements
to refine based on optimizing computational efficiency, taking into account both
error reduction and computational cost. Two efficiency measures are considered:
predicted ‘accuracy-per-computational-cost’ (ACE) and the new ‘anticipated-overall-
computational-cost’ (NACE). The use of the FOSLS local functional as a sharp a
posteriori error estimate along with NI-AMG methods allows parameters to be com-
puted that are used to estimate the current measures. In addition, several “flavors”
of these efficiency-based schemes are tested to determine whether adding certain con-
straints to the efficiency measure, such as the total number of elements to add or
the total amount of error to be reduced, would make it easier to obtain a near opti-
mal grid. Numerical tests show that all of the efficiency-based algorithms effectively
and efficiently capture local features of the solution. For the linear test problem, all
schemes perform equally well, suggesting that the standard ACE scheme is sufficient
without any extra constraints. For the more complicated nonlinear time-dependent
MHD problem, this also is the case. In fact, the constrained schemes appear to at
times perform unnecessary work, making them less optimal. However, all schemes
greatly reduce the amount of computational cost for solving these problems to a spec-
ified accuracy compared to the cost of uniform refinement. In addition, in comparing
the ACE scheme to threshold-based schemes, ACE either outperformed the threshold-
schemes or was no worse than the best threshold-based method at any given time step.
As the optimal refinement strategy varies over time steps, choosing a scheme such as
ACE, which can adaptively choose the optimal refinement strategy is preferable in the
case in which many time steps are needed and the physics can change dramatically.

Several aspects still need to be studied. In this work, a generic AMG solver
was used. Deterioration in the AMG convergence for increased timestep size as well
as Reynolds and Lundquist numbers are observed in the MHD test. Even a slight
improvement in the AMG algorithm would greatly reduce the total work units required
to achieve a specified accuracy. AMG algorithms specifically designed for systems of
PDEs are a topic of current research. This might involve the use of newly developed
adaptive multigrid algorithms described more in [8, 9]. In addition, the hierarchy of
the grids resulting from adaptive refinement might be used to reduce or eliminate the
set up phase of AMG at each level. A new multigrid solver might be developed for
problems arising from adaptive refinement procedures. This would involve including
more of the geometry or structure of the grids into the multilevel solver. Since the
problems that would use such schemes, such as MHD, which is used in a variety of
applications, including fusion energy physics and space weather, are gaining increased
interest, it is to reasonable to tune the numerics for such specific problems.

Many aspects of the adaptive refinement algorithms can be improved. The FOSLS
approximation heuristics introduced in Sect. 3.1 require certain smoothness assump-
tions. When the solution contains singularities, for instance, one might want to adap-
tively determine the strength of the singularity and appropriately apply graded re-
finement techniques rather than splitting elements into subelements with equal size
in each direction. Finally, modifications to accommodate parallel computing need
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to be studied, such as various binning strategies used to derive the parallel marking
algorithms. Also, load balancing issues are important for parallel adaptive refinement
methods. At each refinement level, space filling curves might be used to redistribute
elements such that each processor contains a subdomain with approximately the same
amount of elements or error. As the grid becomes finer, the optimal refinement ap-
proaches uniform refinement, which requires almost no load balancing. This will be
explored in future research.

REFERENCES

[1] J. H. Adler, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, First-order system least
squares for incompressible resistive Magnetohydrodynamics, SIAM J. Sci. Comp. (SISC),
32 (2010), pp. 229–248.

[2] J. H. Adler, T. A. Manteuffel, S. F. McCormick, J. W. Ruge, and G. D. Sanders,
Nested Iteration and First-Order System Least Squares for Incompressible, Resistive Mag-
netohydrodynamics, SIAM J. Sci. Comp. (SISC), (submitted 2009).

[3] R. E. Bank and M. J. Holst, A New Paradigm for Parallel Adaptive Meshing Algorithms,
SIAM Review, 45 (2003), pp. 292–323.

[4] G. Bateman, MHD Instabilities, The MIT Press, 1978.
[5] M. Berndt, T. A. Manteuffel, and S. F. McCormick, Analysis of First-order System Least

Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part II, SIAM J.
Numer. Anal, 43 (2005), pp. 409–436.

[6] M. Berndt, T. A. Manteulffel, and S. F. McCormick, Local Error Estimates and Adaptive
Refinement for First-Order system Least Squares (FOSLS), E.T.N.A., 6 (1997), pp. 35–43.

[7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer, 2nd ed., 2002.

[8] M. Brezina, R. Falgout, S. Maclachlan, T. A. Manteuffel, S. F. McCormick, and
J. W. Ruge, Adaptive Smoothed Aggregation (aSA) Multigrid, SIAM Review (SIGEST),
(2005), pp. 317–346.

[9] , Adaptive Algebraic Multigrid, SIAM J. Sci. Comp. (SISC), (2006), pp. 1261–1286.
[10] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, SIAM, Philade-

phia, 2nd ed., 1999.
[11] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-Order System Least

Squares for Second-Order Partial Differential Equations. I, SIAM J. Numer. Anal., 31
(1994), pp. 1785–1799.

[12] Z. Cai, T. A. Manteulffel, and S. F. McCormick, First-Order System Least Squares for
Second-Order Partial Differential Equations. II, SIAM J. Numer. Anal, 34 (1996), pp. 425–
454.

[13] L. Chacon, D. A. Knoll, and J. M. Finn, An Implicit, Nonlinear Reduced Resistive MHD
Solver, J. of Computational Physics, 178 (2002), pp. 15–36.

[14] , Nonlinear Study of the Curvature-Driven Parallel Velocity Shear-Tearing Instability,
Physics of Plasmas, 9 (2002), pp. 1164–1176.

[15] H. De Sterck, T. A. Manteuffel, S. F. McCormick, J. W. Nolting, J. W. Ruge, and
L. Tang, Efficiency-Based h- and hp-refinement Strategies for Finite Element Methods,
Num. Lin. Alg. Appl., 15 (2008), pp. 89–114.

[16] W. Dörfler, A Convergent Adaptive Algorithm for Poisson’s Equation, SIAM J. Numer.
Anal., 33 (1996), pp. 1106–1124.

[17] R.D. Falgout and U.M. Yang, hypre: a Library of High Performance Preconditioners, in
Computational Science - ICCS 2002 Part III, vol. 2331, Springer-Verlag, 2002, pp. 632–
641.
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