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Abstract9

The modeling of blood flow through a compliant vessel requires solving a system of coupled nonlinear partial differential equations (PDEs).
Traditional methods for solving the system of PDEs do not scale optimally, i.e., doubling the discrete problem size results in a computational
time increase of more than a factor of 2. However, the development of multigrid algorithms and, more recently, the first-order system least-
squares (FOSLS) finite-element formulation has enabled optimal computational scalability for an ever increasing set of problems. Previous
work has demonstrated, and in some cases proved, optimal computational scalability in solving Stokes, Navier–Stokes, elasticity, and elliptic
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 Prid generation problems separately. Additionally, coupled fluid–elastic systems have been solved in an optimal manner in 2D
eometries. This paper presents a FOSLS approach for solving a 3D model of blood flow in a compliant vessel. Blood is mo
ewtonian fluid, and the vessel wall is modeled as a linear elastic material of finite thickness. The approach is demonstrated on thr
eometries, and optimal scalability is shown to occur over a range of problem sizes. The FOSLS formulation has other benefits

hat the functional is a sharp, a posteriori error measure.
2005 Published by Elsevier Ltd on behalf of IPEM.
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. Introduction

Over the past century, many mathematical models for
lood flow have been developed[10]. From the earliest 1D
odels, which were solved analytically, to the present 3D
nsteady models, for which only an approximate numerical
olution can be obtained, the goal has always been to obtain
ore accurate models. Further, to avoid the error associated
ith the introduction of artificial boundary conditions, there

s a constant desire to model larger regions of the circula-
ory system. Unfortunately, present methods for solving the
arge linear systems of equations associated with the numer-
cal approximation generally do not scale optimally, i.e., the
omputation costs are not proportional to the number of
nknowns but proportional to the number of unknowns to

∗ Corresponding author.
E-mail addresses: jheys@asu.edu (J.J. Heys), degroff.curt@tchden.org

C.G. DeGroff), tmanteuf@colorado.edu (T.A. Manteuffel),
tevem@colorado.edu (S.F. McCormick).

some power greater than 1. However, we have recently s
that the use of a first-order system least-squares (FO
finite-element formulation in conjunction with an algebr
multigrid (AMG) solver is capable of achieving optimal sc
ability of the computational costs for some 2D fluid–struc
problems[8]. The goal of this paper is not to present a n
model of blood flow, but to extend this new method and s
that it achieves optimal computational scalability on a
transient model of blood flow through a compliant vesse

Modeling blood flow within a compliant vessel w
requires consideration of both the vessel wall domain
the flowing blood domain. As an added complication,
shape of the blood domain is not known a priori to solv
the equations and is continually evolving with the cur
displacement of the vessel wall. An example of a no-
domain is shown in the upper half ofFig. 1, and this domai
is separated into a blood region (Ωβ) and a vessel wa
region (ΩV). The equations for the vessel wall are norm
defined from the rest position, so they are based on
no-flow domain. The deformed, flowing blood domain w

350-4533/$ – see front matter © 2005 Published by Elsevier Ltd on behalf of IPEM.
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Fig. 1. The no-flow blood (Ωβ) and vessel wall (ΩV) domains (above) and
the deformed blood domain (ΩB) (below) for a coupled blood vessel system
with the initial interface and a deformed interfaceΓ I .

displaced vessel wall is shown in the lower half ofFig. 1,57

and the blood flow region is denoted asΩB. The fluid equa-58

tions are typically defined on this deformed domain, and the59

interface between the two domains is shown asΓ I in the60

deformed case. Mechanical coupling between the domains61

requires the traction to be continuous along the interface62

between the blood and vessel wall regions. In the typical63

case of a non-steady problem, the velocity must also be64

continuous.65

Three important choices must be made when modeling66

blood flow in a compliant vessel. The first choice is the67

mathematical model of the vessel wall—both shell mod-68

els and finite thickness models have been used by others.69

The second choice is in the iteration approach used to han-70

dle the changing blood domain shape—one iteration per71

time step or multiple iterations. The third choice is the cou-72

pling between the three sets of equations, i.e., the coupling73

between the blood equations (Navier–Stokes), the vessel74

wall equations, and the remapping or remeshing equations,75

which handle the changing blood domain shape. We look76

at each of these choices, beginning with the vessel wall77

model.78

The simplest method is to model the vessel wall as a79

shell [13,20]. The viscous shear stress is typically ignored80

[14], resulting in displacement only in the radial direction.81

An important method related to modeling the vessel wall82

a d by83

P the84

fl s of85

a hin86

t dary87

method include the ability to use straightforward finite dif-88

ference approximations and the computational savings from89

not having to move the mesh over the fluid domain. The90

immersed boundary method can have problems with numer-91

ical stability if explicit time stepping is used[21], and the 92

use of discrete delta functions prevents the method from93

achieving more that first-order accuracy[11]. Lee and LeV- 94

eque[12] derived a similar method, called the immersed95

interface method, that overcomes some of the traditional96

difficulties with the immersed boundary method. The other97

option is to model the vessel wall as a structure of finite98

thickness. The choice between these two options depends99

upon the ratio of vessel wall thickness to vessel diameter.100

The smaller this ratio, the smaller the error introduced by101

the shell approximation. For purposes of generality, all mod-102

els presented in this paper are based on finite vessel wall103

thickness. 104

Because the position of the interface and the final shape of105

the deformed fluid domain are not known a priori, a number106

of different iterative methods have been developed to handle107

this moving domain problem. They can loosely be divided108

into two categories: (1) one iteration per time step approaches109

or (2) multiple iterations per time step. Unfortunately, both110

approaches have potential pitfalls because performing multi-111

ple iterations may result in slow convergence[7] and higher 112

computational costs, and the single iteration approach may113

r tion114

[ to115

e time116

s s not117

n oice118

h cou-119

p 120

pling121

o ua-122

t andle123

t tion124

i qua-125

t ain.126

T olu-127

t ua-128

t the129

s addi-130

t new131

s asso-132

c the133

n rigi-134

n lood135

fl ane-136

o ally,137

i led138

t s are139

s wall140

e 141

s is142

t uter143
U
N

s a shell is the immersed boundary method develope
eskin[16], which uses a regular structured grid over
uid domain, with the elastic boundary expressed in term
localized force distribution (Dirac delta functions) wit

he regular grid. The advantages of the immersed boun
JJBE 1060 1–

equire very small time steps to maintain a stable solu
21]. All simulations in this paper used multiple iterations
nsure that the domain shape was nearly correct for the
tep. However, in many cases, the second iteration wa
ecessary if the time step was sufficiently small. The ch
ere is highly dependent upon the choice of equation
ling, which is described next.

The third choice that must be made concerns the cou
f the three different sets of equations—blood flow eq

ions, vessel wall equations, and the equations that h
he changing shape of the blood domain. The first op
s to solve the equations in series, beginning with the e
ions describing the blood flow on the current (fixed) dom
he wall stress along the interface from the blood flow s

ion is then used in the solution of the vessel wall eq
ions to find the new wall displacement. At this point,
hape of the blood flow domain has changed, and
ional equations are typically solved to account for the
hape. Depending on the solution approach, the nodes
iated with the blood flow discretization are moved, or
ew blood flow domain may be mapped back to the o
al domain. The second option is to couple just the b
ow and vessel wall equations and solve them simult
usly, with the mapping equations solved separately. Fin

t is also possible to solve all of the equations coup
ogether so that the remapping or remeshing equation
olved simultaneously with the blood flow and vessel
quations.

The advantage to solving the three parts in serie
hat this method requires the smallest amount of comp
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memory, but it often requires multiple iterations per time144

step to achieve acceptable continuity of traction due to the145

oscillating convergence sometimes observed[7]. The advan-146

tages of coupling the blood flow and vessel wall equations147

include the assurance of continuity of interface tractions148

[6] and typically fewer iterations. The latter advantage may149

stem from the Jacobian matrix containing terms coupling150

the blood flow and vessel wall domains, thus helping pre-151

vent oscillations. However, this coupled system of equations152

increases memory usage and potentially increases compu-153

tational costs over solving the three parts in series. For154

the fully coupled method, the disadvantages include a large155

memory requirement to store the complex Jacobian matrix156

[17], while its advantages include potential quadratic con-157

vergence near the solution[17]. A comparison between the158

three options is presented in[8]. In this paper, all simula-159

tions were performed using the second approach, that is,160

by solving the coupled blood flow and vessel wall equa-161

tions followed by the solving of the remapping equations162

separately.163

The FOSLS methodology has previously been applied to164

the individual pieces of the coupled model—Navier–Stokes165

flow, elasticity equations for the vessel wall, and elliptic166

grid generation (EGG) for remapping the fluid domain. The-167

oretical results for the Stokes and linear elasticity equa-168

tions yield optimal discretization error estimates in theH1
169

p170

a ap171

t has172

b -173

g -174

i een175

d -176

v h of177

t sep-178

a 2D179

f rate180

t ow181

p182

2183

inear184

e185

−186

w187

t e-188

f d can189

b ing190

t )):191

x192

whereL is a characteristic length scaling. Multiplying byL
µV

193

yields 194

−�̂û −
(

λ

µV
+ 1

)
∇̂∇̂ · û = 0 in ΩV . (2) 195

Blood is modeled using the Navier–Stokes equations: 196

−ρ(v · ∇v) − ∇p + µB�v = ρ
∂v
∂t

in ΩB, (3) 197

∇ · v = 0 in ΩB, (4) 198

whereρ is the density,p the pressure,µB the viscosity, and 199

v = (v1, v2, v3) is the velocity. Eqs.(3) and (4)are defined 200

for an Eulerian reference frame, which moves as the vessel201

wall is displaced. The deformed fluid domain is also referred202

to as the physical domain. The traction matching condition203

between the regions is 204

n · σV(u) = n · σB(v) on ΓI, (5) 205

whereσV andσB are the total stress tensors for the vessel206

wall and flowing blood, respectively, andn is the outward unit 207

normal vector on the deformed or physical domain interface.208

Eqs.(3) and (4)can be rewritten in dimensionless form by209

d ted210

b 211

v 212

w r. 213

U s 214

− 215

∇ 216

I e 217

m , the218

d ow-219

i 220

σ 221

a 222

σ 223

w 224

c 225

n 226
U
N

C
O

R
R

E
C

T

roduct norm and optimal algebraic convergence[2]. In
ddition, the FOSLS formulation of EGG, used to m

he deforming fluid domain to a reference domain,
een shown to beH1-elliptic, providing optimal multi
rid convergence[4]. The optimality of FOSLS for solv

ng coupled fluid–elastic equations in 2D has also b
emonstrated numerically[8]. In summary, FOSLS pro
ides optimal overall convergence properties for eac
he three parts of the compliant blood flow system
rately, and it has been numerically demonstrated in

or fluid–elastic problems. Our aim now is to demonst
he scalability of the approach on 3D compliant blood fl
roblems.

. Model equations and formulation

The blood vessel wall is modeled as a compressible l
lastic solid:

µV�u − (λ + µV)∇∇ · u = 0 in ΩV, (1)

hereµV andλ are Laḿe constants andu = (u1, u2, u3) is
he displacement. Eq.(1) is defined on the original, und
ormed domain using a Lagrangian reference frame an
e rewritten in dimensionless form by defining the follow

he dimensionless variables (indicated by hat symbol ( ˆ

ˆ = x

L
, û = u

L
,

JJBE 1060 1–

efining the following the dimensionless variables (indica
y hat symbol ( ˆ )) and number:

ˆ = v
V

, p̂ = p

ρV2
, t̂ = Vt

L
, Re = LVρ

µB
,

hereV is a velocity scaling, andRe is the Reynolds numbe
sing the new variables, Eqs.(3) and (4)can be rewritten a

(v̂ · ∇̂v̂) − ∇̂p̂ + Re−1 �̂v̂ = ∂v̂
∂t̂

in ΩB, (6)

ˆ · v̂ = 0 in ΩB, (7)

t is important to ensure that thedimensional stresses ar
atched between the fluid and elastic solid. However
imensionless variables require the definition of the foll

ng dimensionless stresses:

ˆV = (∇û + (∇û)T) −
(

λ

µV

)
(∇ · û)δij = σV

µV
, (8)

nd

ˆB = Re−1(∇v̂ + (∇v̂)T) − p̂δij = σB

ρV2
, (9)

hereδij is the Kronecker delta symbol. Therefore, Eq.(5)
an be replaced by

· σ̂V(û) = n ·
(

ρV2

µV

)
σ̂B(v̂) on ΓI, (10)
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thus allowing the use of dimensionless variables with the227

stress matching conditions. The use of a consistent length228

scaling,L, between the domains allows the use of a dimen-229

sionless position matching condition along the interface,230

x̂ = ξ̂ + û on ΓI, (11)231

whereξ̂ corresponds to the no flow or undeformed coordi-232

nates. We drop hat symbol ( ˆ ) in what follows since only233

dimensionless variables are considered.234

Elliptic grid generation (EGG) is used to map the235

deformed blood flow region (the physical domain,ΩB) back236

to the original, undeformed computational region (Ωβ). The237

EGG equations are derived by requiring that the map be bijec-238

tive and satisfy239

�xξ = 0 in ΩB, (12)240

where ξ = (ξ(x, y, z), η(x, y, z), ζ(x, y, z)) are the unde-241

formed computational coordinates. Eq.(12)is defined on the242

unknown physical domain,Ωβ, but it can be inverted so that243

the equation is defined on the computational domain[9]. The244

solution to the EGG equations allows Eqs.(6) and (7)to be245

rewritten so that they are defined on the original computa-246

tional domain instead of the physical domain.247

Eqs.(2), (6) and (7)and the inverse of(12)can be recast as248

a bles.249

F city)250

r251

r iting252

E253

U254

−255

∇256

w ,257

b ond-258

o side.259

E d to260

e -261

l262

u263

a tent,264

t265

τ266

w ann267

b268

t x269

[ nd270

E r.271

The first-order system for the EGG equations can be writ-272

ten as[4] 273

J − ∇x = 0 in Ωβ, (18) 274

(J−TJ−1∇) · J = 0 in Ωβ, (19) 275

∇ × J = 0 in Ωβ, (20) 276

wherex = (x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ)) is the mapping 277

from the undeformed computational domain to the deformed278

physical domain (seeFig. 1), J the Jacobian of the mapping,279

andJ−T is the inverse of the transpose of the Jacobian. Eq.280

(19) is nonlinear and illustrates that compliant blood flow281

problems are always nonlinear in character, either implicitly282

or explicitly. 283

Finally, the first-order system for the Navier–Stokes equa-284

tions(6) and (7)is, after mapping, 285

V − ∇v = 0 in Ωβ, (21) 286

287

Re−1(J−TJ−1∇) · V − (J−1∇ps)
T − (v · J−1V ) 288

= ∂v
∂t

in Ωβ, (22) 289

290

∇ −1
291

( 292

R 293

I 294

( to295

a more296

e t be297

d 298

299

t rder300

v 301

302

303

304

w ed305

c 306

v any307

c e 308

d 309

t 310

from311

t e 312

m lem.313

F flow314
U
N

C
O

R
R

E
C

TE

first-order systems of equations by defining new varia
or example, the vessel wall equation (i.e., linear elasti
equires defining a new 3× 3 matrix of variablesU = Uij that
epresent derivatives of the primary variables. Then, rewr
q. (2) as a first-order system gives

− ∇u = 0 in ΩV, (13)

(∇ · U)T −
(

λ

µV

)
∇ tr(U) = 0 in ΩV, (14)

× U = 0 in ΩV, (15)

here tr(U) = U11 + U22 + U33. For the first-order system
old letters indicate a vector, capital letters indicate a sec
rder tensor, and the shape of zero is implied by the left
q. (15) is added to expose divergence-free errors an
stablishH1-ellipticity [3]. It is important to note that Dirich

et boundary conditions, given by

= g on ΓV, (16)

re now supplemented with the additional, but consis
angential boundary condition:

· U = 0 on ΓV, (17)

hereτ is the unit vectors tangential to the surface. Neum
oundary conditions can be rewritten asn·U = b, wheren is

he vector normal to the surface andb is the specified flu
3]. The Neumann and Dirichlet conditions for the fluid a
GG equations are also modified in a consistent manne
JJBE 1060 1–

tr(J V ) = 0 in Ωβ, (23)

J−1∇) · v = 0 in Ωβ, (24)

e−1 ∇ × V = 0 in Ωβ. (25)

n approximating the solution to this system, Eqs.(23) and
24) can be strictly enforced or weighted more heavily
chieve a result with less error in mass conservation and
rror in momentum conservation, which may or may no
esirable.

The dimensionless stress matching condition(10)between
he two regions can now be rewritten in terms of first-o
ariables:

J−1n̄ ·
(

U + UT + λ

µV
tr(U)δij

)
− J−1n̄ ·

(
ρV2

µV

)

× (Re−1 J−1V + (Re−1 J−1V )
T − pδij) = 0 on ΓI,

(26)

heren̄ is the outward unit normal vector on the undeform
omputational interface. TheJ−1 operator maps̄n to n, the
ector normal to the deformed or physical interface. In m
ases, it is possible to computen directly, which may b
esirable to prevent inaccuracies inJ−1 from contaminating

he traction matching condition.
The construction of the least-squares functional(s)

he system of first-order equations(13)–(26)depend on th
ethod chosen to solve the coupled fluid–elastic prob
or the approach used in this paper, coupling the blood
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and vessel wall equations while leaving the remapping equa-315

tions as a separate problem, the first functional is given by316

G(u, U, v, V, p):=||U − ∇u||20,ΩV
+
∥∥∥∥(−∇ · U)T −

(
λ

µV

)
∇ tr(U)

∥∥∥∥
2

0,ΩV

+ ||∇ × U||20,ΩV
+ ||V − ∇v||20,Ωβ

317

+
∥∥∥∥Re−1(J−TJ−1∇) · V − (J−1∇ps)

T − (v · J−1V )
∂v
∂t

∥∥∥∥
2

0,Ωβ

+ ||∇ tr(J−1V )||20,Ωβ
+ ||(J−1∇) · v||20,Ωβ

+ ||Re−1 ∇318

× V ||20,Ωβ
+
∥∥∥∥∥J−1n̄ ·

(
U + UT + λ

µV
tr(U)δij

)
− J−1n̄ ·

(
ρV2

µV

)
(Re−1 J−1V + (Re−1 J−1V )

T − pδij)

∥∥∥∥∥
2

(1/2),ΓI

, (27)319

where|| · ||20,Ω denotes theL2 norm of the enclosed quantity320

over the regionΩ. J is initially the identity matrix, but cal-321

culated for later iterations by first minimizing the following322

functional:323

GEGG(x, J):=||J − ∇x||20,Ωβ
+ ||(J−TJ−1∇) · J ||20,Ωβ

324

+ ||∇ × J ||20,Ωβ
. (28)325

Thus, G is a nonlinear functional that is minimized first,326

followed by a minimization ofGEGG. These minimizations327

may be repeated to check for convergence. The bound-328

ary conditions, other than the traction matching condi-329

tion, have been omitted fromG and GEGG because they330

can be imposed directly on the finite-element (approxima-331

t n be332

e addi-333

t own334

t the335

m te of336

t ictly337

e e. In338

G339

u tion,340

L ry341

t342
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a ing a344

G func-345

t nsure346

t The347

f the348

fi the349

w sis is350
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A r352
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c tion355

t the356

N inear357

b e358

o ure,359

a -360

f ich361

may be small and hidden in theL2 norm, are large and thus362

controllable in the functional norm. 363

Fig. 2 summarizes the many levels of iteration that take364

place in solving compliant blood flow problems. 365

• The outermost level consists of cycling between the func-366

tional for blood flow and vessel wall,G, and the EGG 367

functional,GEGG, for remapping the blood domain. Typi-368

cally, only a single outer iteration is required for each time369

step, but a second iteration can be performed to check con-370

vergence. 371

• Since both functionals in the outer iteration are nonlinear,372

each individual functional is linearized and at least one iter-373

ation is performed. Typically, one iteration is sufficient for374

small time steps (<0.05 s) and two iterations are sufficient375

for larger time steps. 376

• sing377

378

CG379

con-380

u-381

lly,382

ate383

384

3 385

sim-386

u 387

T s of a388

k 389

F liant
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U
N

C
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R
R

E
C

T

ion) space. Alternatively, these boundary conditions ca
nforced weakly in a least-squares sense by adding

ional terms to the functional. This choice has been sh
o have little effect on the final solution, especially as
esh is refined, but it can affect the convergence ra

he linear solver. The simulations in this paper used str
nforced boundary conditions unless noted otherwis
, L2 norms are used for the domain andH1/2 norms are
sed for the boundary. In the numerical implementa
2 norms scaled by 1/h are used for the weak bounda

erms.
The equations that are used in the functional (G andGEGG)

re first linearized so that the solution can be found us
auss–Newton approach. The value of the nonlinear

ional is calculated after each Gauss–Newton step to e
hat the nonlinear functional is decreasing to a minimum.
unctional for the linearized equations is minimized over
nite-element spaces by setting the derivative to zero in
eak sense for each linearized step. A finite-element ba

hen chosen so that the weak form generates a matrix pro
ll of the simulations presented in Section3 use a trilinea
nite-element basis for all of the variables. The FOSLS
ulation allows the solution spaces for the variables t

hosen independently, with no restrictive stability condi
o satisfy. As a result, both the pressure and velocity in
avier–Stokes equations can be approximated with a tril
asis. FunctionalsG andGEGG measure the first derivativ
f the error in the primary variables (i.e., velocity, press
nd displacement), unlike the error in theL2 sense. There

ore, error characterized by ‘wiggles’ in the solution, wh
JJBE 1060 1–

The inner most iterations solve the linear system u
an algebraic multigrid (AMG) preconditioner[1,18] for
a conjugate gradient (CG) iteration. Under this AMG/
method, a single V-cycle is used to calculate a pre
ditioner for a single CG iteration. Most of the comp
tational cost is associated with the V-cycle. Typica
20–40 AMG/CG iterations provide a sufficiently accur
approximation to the solution of each linear system.

. Results

The scalings and dimensionless numbers used for all
lations, unless noted otherwise, are summarized inTable 1.
hese values are calculated based on the assumption
inematic viscosity,v, for blood of 4× 10−6 m2/s, a Young’s

ig. 2. Summary of the different levels of iteration for modeling comp
lood flow.
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Fig. 3. Maximum dimensionless inlet speed (left) and dimensionless outlet pressure (right) over a single, 1 s cardiac cycle.

Table 1
Scalings and dimensionless parameters used in the model for compliant
blood flow. Any changes to these values are explicitly noted

Length scaling,L (m) 0.01
Velocity scaling,V (m/s) 0.5
Reynolds number,Re 1250
Lamé ratio, λ

µV
24

Traction matching scaling,ρV
2

µV
7.4× 10−3

Time step scaling,V
L

50

modulus of 1× 105 Pa for the vessel wall, and a Poisson’s390

ratio of 0.48 for the vessel wall. These parameters are chosen391

to represent typical conditions found in the major vessels[5].392

Our goal in this paper is not to present a new, more accu-393

rate model of blood flow in one particular location, but to394

present a methodology for modeling compliant blood flow in395

a computationally scalable manner. Therefore, simplicity and396

generality are the objective in choosing parameters, boundary397

conditions, and geometries in this section. All calculations398

were performed on a modest 700 MHz Itanium processor399

using up to 8 GB memory.400

The first test problem is flow through a simple straight401

tube of length 5.0 and internal diameter 1.0 along the entire402

axis at rest (no flow). The vessel wall has a thickness of 0.1403

(1 mm in dimensional terms), and the ends of the vessel wall404

are assumed to be fixed. A no-stress condition is imposed on405

the outer normal surface of the vessel, based on the assump406

tion that the surrounding tissue applies negligible force. The407

imposing of other, more complicated boundary conditions on408

the outer tube surface is trivial and does not impact the numer-409

ical performance. A parabolic velocity profile is used for the410

blood flow at the inlet, and the maximum velocity along the411

inlet is varied using a half-sine wave (Fig. 3). In this way, 412

the velocity is initially zero, increases in a sine wave profile413

to a maximum at 0.25 s, decreases back to zero at 0.5 s, and414

remains zero until 1.0 s, at which point a new pulse is begun.415

Other smooth inlet velocity profiles that we tried exhibited416

numerical performance similar to what we report below. A417

no-slip condition is imposed along the vessel wall, and the418

tangential velocity is also set to zero at both the inlet and419

outlet. The pressure at the outlet is based on a dimension-420

less pressure equal to zero at the beginning of each pulse.421

The pressure rises to 25 in a quarter sine wave pattern at the422

beginning of the pulse, and then it linearly returns to zero at423

the end of the pulse (Fig. 3). Both the inlet velocity profile 424

and the outlet pressure profile are qualitatively based on the425

profile data in Perktold and Rappitsch[14]. 426

The numerical performance of the FOSLS formulation427

and the AMG/CG solver is summarized inTable 2. In this 428

table, the problem size is varied over an order of magnitude,429

yet the CPU time is nearly proportional to the number of430

unknowns. This is clearly seen in the bottom two lines that431

show a doubling of the number of unknowns and a doubling of432

the CPU time, i.e., optimal scalability. The convergence factor433

is the ratio of the value of the residual after the AMG/CG cycle434

to the value before the cycle. AsTable 2shows, the residual 435

for the coupled functional, blood flow and vessel wall, is436

d The437

c wer438

( 439

f the440

e 441

Table 2
Numerical performance of the FOSLS finite-element formulation using a AM

Average mesh spacing (cm) Number of unknowns CPU nctional

0 7
0 5
0 6
0 8
U.17 1.07× 105 1
.13 2.08× 105 3
.085 7.04× 105 12
.067 1.39× 106 25
JJBE 1060 1–

-ecreased by a factor of 0.90 every AMG/CG iteration.
onvergence factors for the EGG functional were much lo
approximately 0.4).

The final value of the functional is a sharp measure o
rror in the solution as measured in theH1-norm. Lines 2

G/CG solver for the straight tube problem

time per step (min) Convergence factor Total fu

0.89 7.63× 10−3

0.87 7.61× 10−3

0.90 2.50× 10−3

0.90 2.11× 10−3
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Fig. 4. Velocity profile and vessel wall for the central cross-section of the
straight tube test problem at peak velocity.

and 4 represent refinements of lines 1 and 3, respectively, in442

the axial direction only. Thus, line 3 represents a full refine-443

ment, i.e., halving the mesh spacing, of line 1, and line 4444

represents full refinement of line 2. Refinement in the axial445

direction does not significantly reduce the error compared to446

refinement in the radial and circumferential directions. For447

the coarsest mesh, axial refinement reduced the error by less448

than 1% (compare lines 1 and 2), but refinement of that mesh449

only in the radial and circumferential directions reduced the450

error by a factor of 3 (compare lines 2 and 3). It is com-451

mon in blood flow modeling to take advantage of this fact by452

using less refinement in the axial direction[19]. However, a453

full refinement of the mesh, i.e., halving the mesh spacing,454

results in a functional decrease of a factor of more than 3.455

The velocity profile for this test problem is shown for the456

central cross-section inFig. 4. The flow is laminar, and we457

did not observe any transitions to turbulence through the flow458

cycle. The vessel wall is only shown on a single plane along459

the axis for clarity. The displacement of the vessel wall at the460

center of the tube is shown inFig. 5, where the light gray is461

the at rest position and the overlying dark gray represents the462

displacement at peak velocity. The wall displacement (com-463

pliance) was small (approximately 8–10%) for this particular464

test, consistent with the results of Perktold et al.[15].465

The second test problem is similar to the first, a tube of466

length 5. However, this tube has a sine wave shape obstruc-467

t the468

a truc-469

t , and470

t The471

m ntical472

t al473

p lem.474

T ous475

e , but476

t od.477

T with478

Fig. 5. Displacement of the vessel wall at peak velocity with the at rest
position shown in light gray and the overlying dark gray representing the
displaced position.

Fig. 6. A cross-section of streamlines for flow down a vessel with a sine
shaped obstruction at the peak flow rate. A recirculation forms downstream
of the obstruction.

regards to the value of the functional, which is a measure of479

error in the problem. Clearly, the minimum functional value480

is not as small using the trilinear basis. The functional value481

(error) is still going to zero as the mesh is refined, but the use482

of a higher-order basis could result in less error with little483

increase in computational costs.Fig. 6 shows the stream- 484

lines for flow down the tube with an obstruction. The high485

Reynolds number results in a recirculation downstream of486

the obstruction.Fig. 7shows the displacement of the wall at487

peak velocity for the tube with obstruction. Again, the vessel488

wall displacement (approximately 8–12%) is consistent with489

the results of others. 490

The final test problem is a single tube, which has a com-491

plete semi-circular curve (radius of curvature of 2.667) fol-492

lowed by a straight section. Near the beginning of the straight493

section is a parabolic shaped obstruction that reduces the tube494

diameter to 0.5 from 1.0. This represents a diseased state of495

T
N g a AMG/CG solver for the straight tube with obstruction problem

A CPU time per step (min) Convergence factor Total functional

0 8 0.90 75.1
0 6 0.91 66.4
0 9 0.92 55.3
0 2 0.92 38.6
U
N

C
O

R
R

Eion and thickening of the vessel wall at the midpoint in
xial direction. The tube diameter at the center of the obs

ion is 0.6 compared to an unobstructed diameter of 1.0
he obstruction length is one fifth of the tube length.
esh sizes and outer dimensions were otherwise ide

o the first problem.Table 3summarizes the computation
erformance of the FOSLS approach on this test prob
he solution times were slightly slower than the previ
xample, due to the slightly higher convergence factors
hey still demonstrate optimal scalability for the meth
he biggest difference compared to the first example is

able 3
umerical performance of the FOSLS finite-element formulation usin

verage mesh spacing (cm) Number of unknowns

.17 1.07× 105 1

.13 2.08× 105 3

.085 7.04× 105 12

.067 1.39× 106 26
JJBE 1060 1–
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Fig. 7. A cross-section showing vessel wall displacement for the straight
tube with obstruction at the peak flow rate. The light gray is the at rest wall
position and the darker gray is the deformed vessel wall.

the aorta corresponding to one of the more common types of496

congenital heart disease termed ‘coarctation of the aorta’[5].497

The tube length is 15 so that changing the length scaling,L,498

to 1.5 cm results in a geometry that approximates the aorta.499

The boundary conditions are the same as before, with the500

maximum inlet velocity being defined by a half sine wave,501

and the outlet pressure being defined as shown inFig. 3. For502

this larger problem, it is not possible to test a large range503

of mesh sizes on a single processor computer. Basically, the504

coarsest mesh that accurately represents the geometry results505

F
l
g

in a linear system with half a million degrees of freedom. As506

a result, only two different meshes, corresponding toh ≈ 0.1 507

and 0.05 were solved. For this most limited of ranges, the508

solver still seemed to display optimal scaling, and the CPU509

time per time step was approximately 8 h for the finest grid510

(4 million degrees of freedom). The results showed a small511

recirculation downstream of the obstruction only for the inner512

part of the curve (Fig. 8). Three streamlines in a single plane513

are also shown inFig. 8to illustrate how inertia causes higher514

flows along the outer curve region of aorta for this particu-515

lar cross-section. Streamlines in other cross-sections behave516

differently. 517

4. Conclusions 518

As larger and more complex mathematical models of the519

vasculature system are developed, the need for scalable algo-520

rithms to solve these models will also increase. Even if com-521

putational power doubles in 18 months time, only a scalable522

algorithm can allow a corresponding doubling in the problem523

size. In this paper, we demonstrated numerically the ability524

of a FOSLS problem formulation (in conjunction with an525

AMG/CG) to enable a scalable model of blood flow through526

a compliant vessel wall. In addition to optimal scalability,527

t 1
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ig. 8. A central cross-section showing pressure drop and select stream-
ines for flow through a curved tube with obstruction at peak flow rate. The
eometry is approximately that of the aorta.
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he algorithm also provides a sharp error measure in theH -
orm. The technique provides a great deal of flexibilit

hat

the finite-element spaces for each variable may be ch
independently,
the fluid (blood) and structure (vessel wall) equations
be coupled and solved together or decoupled and s
iteratively, and
implicit time stepping is probably stable regardless of t
step size.

The fact that implicit time stepping is used results
method that is not well suited for situations in wh

xtremely small time steps must be taken. Further, the
f a lower order basis can result in slow convergence to
ctual solution with refinement for some problems. While

ocus in this paper was on a very general model and si
eometries, future work will apply the techniques descr

n this paper to patient specific geometries and more ph
ogically accurate models.
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