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SUMMARY

The standard multigrid algorithm is well-known to yield optimal convergence whenever all high
frequency error components are associated with large relative eigenvalues. This ensures that smoothers
like Gauss-Seidel and Jacobi will significantly dampen high frequency error components, and thus,
generate smooth error. It has often been noted that this is true for matrices generated from standard
discretizations of most elliptic equations. In this paper, we address a system of equations that is
generated from a perturbation of the non-elliptic operator I− grad div by a negative ε∆. For ε near
to one, this operator is elliptic, but as ε approaches zero, the operator behaves like the non-elliptic
operator I−grad div. This non-elliptic operator has been studied in several papers, and subsequently,
it is widely known that discretizing the problem with the proper finite element space allows one to
define a robust geometric multigrid algorithm. Here we use this work to assist in understanding the
perturbed problem. We will introduce a new finite element space to discretize the problem and a
relaxation operator used in the context of this new space that guarantees that the smoother leaves
no high frequency error components behind. This is theoretically expressed in a theorem that proves
that the multigrid algorithm converges independent of the mesh size and the parameter ε. Copyright
c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A study of multigrid approaches for solving matrix equations generated from the 3D linear
Boltzmann equation when formulated using a scaled least-squares functional (see [2], [11]) has
revealed the need to understand finite element discretization and multigrid solution methods
for a particular second-order partial differential equation. For a bounded, connected domain
Ω ⊂ IR3 with Lipschitz boundary Γ, this differential equation is

u− ε∆u−∇∇ · u = f in Ω
u = g on Γ,

(1)
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where ε ∈ (0, 1] and ∆ := diag(∆). Although the system arises in 3D, the simpler case of a
2D bounded polygonal domain is studied here. We will present 3D results in a future paper in
the context of a scaled least-squares formulation of the 3D linear Boltzmann equation. Also,
see [2] for 3D results.

A 2D system of this form was recently addressed by Mardal et al. in the context of Darcy-
Stokes flow (see [12]), where a nonconforming finite element space on triangular elements
for discretizing the variational formulation of (1) is introduced. On each triangular element,
this FE space has nine degrees of freedom given by two normal components and a tangential
component on each triangle edge. In that paper, the authors do not provide a robust solution
method for solving the discrete system of equations. Here, we present a conforming tensor-
product finite element space on rectangles for discretizing the variational formulation of (1),
and describe a robust multigrid method that is easily constructed in the context of this
conforming finite element space. We also include numerics that strongly suggest that the
multigrid algorithm converges with a factor bounded away from unity and independent of
both mesh size and parameter ε. Theoretical results will bolster this claim by illustrating
that convergence of the multigrid algorithm, in the case where ε = 0, is independent of mesh
size. Boundary conditions will be different, as in (2) below, for this value of ε. For reference
purposes, we express the reduced system as follows:

u−∇∇ · u = f in Ω
n · u = g on Γ,

(2)

where n is the unit vector that is outward normal to Γ. We note that the lowest order Raviart-
Thomas finite element space on triangles, called RT0 here (cf. [7], [9]), is a common choice for
discretizing (2).

In [1], Arnold et al. presented a robust multigrid strategy for preconditioning the discrete
system of equations that arises from discretizing the variational formulation of (2) with RT0
elements. The main factor behind the robustness of their multigrid method is the utilization
of an appropriate relaxation operator that guarantees a smooth error after relaxation. It is
well known that standard relaxation schemes (e.g Gauss-Seidel, Jacobi) would fail in this case.
While they substantially dampen error components associated with large eigenvalues, they
do not dampen error components associated with small eigenvalues. Hence, those components
that are div-free, or nearly div-free, are effectively not attenuated. These components can also
be regarded as the near null space components of the operator. Since these components can
be arbitrarily oscillatory, geometric smoothing will not occur for the error. This is equivalent
to I − grad div not being an elliptic operator. Vassilewski and Wang in [13] were the first to
study multilevel solution approaches for solving the discrete system of equations derived from
(2). Their approach constructs the local div-free functions and their orthogonal complements
in the finite element space. We are more interested in the work of Arnold et al. because they
do not use explicit construction. Instead, they simply use a group smoothing approach on
appropriately chosen local subdomains. What binds the theory behind these two approaches,
though, is their dependence on the ability to express the RT0 finite element space in a discrete
Helmholtz decomposition.

We should also note that work has been undertaken in 3D on this problem. Hiptmair and
Hoppe in [10] describe a geometric multigrid approach that is similar to both 2D approaches
discussed above. Their approach uses an idea that is essentially distributed relaxation, which
was mentioned in early work of Brandt [5], to handle the troublesome div-free components.
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The main idea is to take on the div-free relaxation in a higher-order space, which amounts to
performing a Gauss-Seidel relaxation on Poisson’s equation. This approach directly translates
to our problem, but requires us to use multigrid methods for biharmonic equations. We will
not discuss this idea here as the Arnold approach is more suitable as it avoids going to a
fourth-order problem. Nonetheless, see [10] for this work on I− grad div in 3D.

In the rest of the paper, we proceed as follows. In the next section, notation is introduced
and the weak formulation corresponding to (1) is defined. Section 3 contains the description of
the 2D cubic-quadratic conforming finite element space. The multigrid algorithm for solving
the discrete problem is laid out in section 4. In section 5, we provide numerical results to
confirm that the multigrid algorithm has optimal convergence. The numerical results suggest
that convergence improves as ε > 0 increases. In section 6, we will prove that for ε = 0,
our multigrid algorithm will converge with rates independent of the mesh. We end with final
remarks in section 7.

2. PRELIMINARIES

For Ω ⊂ IR2, denote by Ck(Ω) the class of continuous functions on Ω with k continuous
derivatives, and by C∞(Ω) the class of infinitely differentiable functions on Ω. For the classical
Hilbert spaces, Hm(Ω), the standard conventions for representing norms are used:

‖v‖2m,Ω :=
∑

|α|≤m

∫

Ω

|∂α v|2 dxdy and |v|2m,Ω :=
∑

|α|=m

∫

Ω

|∂α v|2 dxdy.

Also, L2(Ω) = H0(Ω), C∞0 (Ω) refers to the subset of C∞(Ω) with compact support, and Hm
0 (Ω)

represents the closure of C∞0 (Ω) in the norm ‖ · ‖m,Ω. For the product space Hm(Ω)2 the
alternate, and simpler, bold notation of Hm(Ω) will be used. Let ‖ · ‖m,Ω and | · |m,Ω also
represent norms and semi-norms for product spaces. The use of the scalar or the product
definition will be clear from the context.

For u = (u1, u2)
t and v = (v1, v2)

t, the L2 inner product is

〈u,v〉0,Ω := 〈u1, v1〉0,Ω + 〈u2, v2〉0,Ω ,

which yields the norm ‖v‖20,Ω := 〈v,v〉. Similar norms and inner products exist for the other

Hm(Ω) spaces. For ∇u = (∇u1,∇u2)
t
, we also define

〈∇u,∇v〉0,Ω := 〈∇u1,∇ v1〉0,Ω + 〈∇u2,∇ v2〉0,Ω ,

which yields the semi-norm |v|21,Ω := ‖∇v‖20,Ω. In the remainder, whenever the meaning is
clear, the subscript Ω will be omitted from inner products and norms as well as the subscript
0 from the L2 inner product and norm.

Next, consider the Hilbert space

H(div) :=
{
v ∈ L2(Ω)2 : divv ∈ L2(Ω)

}
,

where divv = ∂xv1 + ∂yv2. The inner product for H(div) is given by

Λ(u,v) := 〈u,v〉+ 〈divu,div v〉 (3)
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and its corresponding norm is written as ‖u‖Λ :=
√

Λ(u,u). We also must consider a subspace,
H0(div), given by

H0(div) = {v ∈ H(div) : v · n = 0 on Γ} ,
where Γ := ∂Ω and n is as defined in the introduction. Additionally, we will refer to the
grad-perp operator, which is given by

∇⊥ = (−∂y, ∂x)t.
Next, the addition of an ε-sized H1 term to ‖v‖2Λ leads to the definition

‖v‖2ε := ‖v‖2 + ‖divv‖2 + ε ‖∇v‖2. (4)

With a closure taken with respect to ‖ · ‖ε we get the spaces

V := (C∞(Ω))
2

and V0 := (C∞0 (Ω))
2
.

Note that V(Ω) and H1(Ω) are algebraically and topologically equivalent for ε > 0 and only
differ in their respective metrics. This equivalency also holds for V0(Ω) and H

1
0(Ω).

We now define the weak formulation of (1). For simplicity, we concentrate on the case of
homogeneous boundary data in (1). Hence, the weak formulation becomes: seek u ∈ V0 such
that

Aε(u,v) = f(v), ∀ v ∈ V0, (5)

where
Aε(u,v) := 〈u,v〉+ ε 〈∇u,∇v〉+ 〈divu,div v〉 ,

and f(v) := 〈f ,v〉. If f ∈ V′

0, where V
′

0 denotes the dual space to V0, then a unique solution
to (5) exists in the Hilbert space V0 as a result of the Riesz Representation Theorem [6].

To turn (5) into a discrete problem, we use finite elements. Although carefully constructed
nonconforming finite elements leads to reasonable convergence (see [12]), a robust multilevel
algorithm for the resulting linear system is not obvious. Here, we concentrate on conforming
approaches. The discrete problem then reads: seek uh ∈ Vh

0 such that

Aε(u
h,vh) = f(vh), ∀ vh ∈ Vh

0 , (6)

where Vh
0 ⊂ H1

0(Ω). As a result the solution uh is the element of Vh
0 that minimizes the error

in the ‖ · ‖ε norm. That is, if u and uh are solutions of the variational problem (5) in V0 and
Vh
0 , respectively, then

‖u− uh‖ε = inf
vh∈Vh

0

‖u− vh‖ε. (7)

Before proceeding to the next section, where we present the FE space used in (6), we highlight
the two main principles on which the FE space is based. The first principle is that the FE
space needs to be continuous in order to be conforming in H1. The second principle is that the
FE space must facilitate the elimination of div-free error components in a relaxation scheme.
This principle does not typically hold for standard FE spaces. It does, however, hold for the
RT finite elements often used to discretize (2) (cf. [1, 13]). However, the RT spaces consist of
discontinuous functions. Instead, we define a new, higher-order conforming FE space that is
based on the RT space. To this end, consider the following definition of the lowest order RT
space on rectangles:

RT[0] :=

{
v ∈ H(div; Ω) : v|T =

(
a1 + b1 x
a2 + b2 y

)}
, (8)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–23
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Figure 1. Shape functions for Lagrangian quadratics and Hermite cubics

where Ω is partitioned into 2D rectangular elements T . This tensor-product FE space admits a
basis for the div-free subspace with local support. This allows global div-free error components,
which are also the near null space components, to be accurately represented through a basis
with local support. Consequently, there exists an efficient smoother for global oscillatory div-
free error. Motivated by common 1D finite element spaces, we present a space in the following
section that has the same features as (8), except with more continuity. In the remainder, this
space without boundary restrictions will be referred to as either MT or MTh.

3. RT-LIKE CONTINUOUS FINITE ELEMENTS

In this section, we introduce our new finite element space, state and prove the existence of a
discrete Helmholtz decomposition, and establish error bounds.

3.1. Definition of elements

Consider the rectangular domain Ω = Ix × Iy for Ix = [ ax, bx ] and Iy = [ ay, by ] given that
ax < bx and ay < by. Next, consider non-uniform partitions, Ihx and Ihy , represented by the
sets of grid points:

ax = x0 < x1 < ... < xn−1 < xn = bx

and
ay = y0 < y1 < ... < ym−1 < ym = by.

Let hx = maxi=1,n {xi − xi−1} and hy = maxj=1,m {yi − yj−1} and then denote the collection
of non-uniform rectangular elements by Ωh = Ihx × Ihy where h = max {hx, hy}. We use the

notation T or Tk to represent an arbitrary rectangular element and we use Th = {Tk}Nh

k=1 to
denote the collection of all elements. Next, the FE space is constructed by separately defining
the component spaces, i.e., MTh := (M1h, M2h)

t. Additional notation is needed to define this
construction.

Let P`(I) consist of all polynomials up to degree ` on an arbitrary interval I and let

C(m,n)(Ω) :=
{
f(x, y) ∈ C(Ω) : ∂mx f ∈ C(Ω) and ∂ny f ∈ C(Ω)

}

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–23
Prepared using nlaauth.cls
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and

Ck(Ω) :=
{
f(x, y) ∈ C(Ω) : ∂k1

x ∂k2
y f ∈ C(Ω) for k1 + k2 ≤ k

}
.

Also, let Ix,i = [xi−1, xi] and Iy,j = [yj−1, yj ] so that Tk = Ix,i×Iy,j is an arbitrary rectangular
element of Th. Now we define

M1h :=
{
vh : vh ∈ C(1,0) and vh|T ∈ P3(Ix,i)⊗ P2(Iy,j), ∀ T ∈ Th

}
(9)

and

M2h :=
{
vh : vh ∈ C(0,1) and vh|T ∈ P2(Ix,i)⊗ P3(Iy,j), ∀ T ∈ Th

}
. (10)

Finally,

MTh :=

{(
u1
u2

)
:

u1 ∈ M1h

u2 ∈ M2h

}
. (11)

Next, we explain the nodal and edge degrees of freedom found in MTh.
Consider the 1D Lagrangian quadratic shape functions and the 1D Hermite cubic shape

functions in Figure 1. On reference element T = [0, 1]2, we define the following twelve 2D
shape functions,

φl(x, y) = c2i−1(x)qj(y) and αl(x, y) = c2i(x)qj(y),

where l = 3(i− 1)+ j for i = 1, 2 and j = 1, 2, 3. Next, we place nodes on corners and edges of
T as in Figure 2, and attach two degrees of freedom to each node. This allows the definition
of the local interpolant

Π1h,T v =
6∑

l=1

Nl(v)φl(x, y) + Ol(v)αl(x, y). (12)

where

Nl(v) = v(xl) and Ol(v) = (∂x v)(xl).

These linear functions, Nl(v) and Ol(v), have the properties

Nl(φr) =

{
1 if r = l
0 if r 6= l

and Ol(αr) =

{
1 if r = l
0 if r 6= l

and

Nl(αr) = 0 and Ol(φr) = 0 ∀ r.
The interpolant in (12) is only defined on the reference element. We get a local interpolant
for an arbitrary rectangular element, Tk, from the interpolant on the reference element in the
usual way.

The shape functions and nodal variables for the second space, M2h, are obtained by reversing
the roles of x and y in the definition of M1h. Therefore, degrees of freedom for M2h are defined
on T by rotating the reference element in Figure 2 by 90 degrees. (Nodes sit on lower and
upper edges.) Shape functions and nodal variables for M2h are defined in the same way as for
M1h. We leave the details of these constructions to the reader, but we note that a similar local
interpolant like that in (12) is obtained for M2h.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–23
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Figure 2. 2D Nodal Variables for v1 on a reference element T ∈ Th

We finish with describing the construction of MTh by making two last comments. The first
is that each space has a basis with local support. The second is that each local interpolant,
Πih,T , leads to a global interpolant, Πih, and subsequently a global interpolant

Πh := (Π1h,Π2h)
t (13)

for MTh. The exact nature of Πih for i = 1, 2 is obtained from the respective local interpolant
in the usual way. Error estimates will be presented in Section 3.3 for Πh. Notation that we
will use in the future to account for different boundary data is MTh

0 := MTh ∩H0(div) and
MTh

00 :=MTh ∩H1
0(Ω).

Remark: While the above definition of MTh can be reasonably extended to general shaped
domains, e. g. requiring isoparametric quadrilateral elements, the feature described in the next
section, the discrete Helmholtz decomposition, only exists when we have a tensor product grid
on a domain that is a union of overlapping rectangles.

3.2. Discrete Helmholtz Decomposition

Two additional spaces are now introduced so that we can describe the div-free subspace ofMTh

and then a discrete Helmholtz decomposition for MTh. Later we discuss how the following
propositions are affected by restricting to subspaces MTh

0 and MTh
00. Hence, for the same

mesh, Ωh, and elements, Th, as in the previous section, define the bi-Hermite cubic space

Wh =
{
wh : wh ∈ C1(Ω) and wh|T ∈ P3(Ix,i)⊗ P3(Iy,j), ∀ T ∈ Th

}
. (14)

As is illustrated in the next proposition, the div-free subspace of MTh can be obtained from
Wh via grad-perp applied to Wh. We shall denote this div-free subspace by DFh. The next
proposition formalizes this relationship between Wh and DFh for the case of no boundary
conditions.

Lemma 3.1. Assume that Ω is a domain that is the union of overlapping rectangles. Next,
let Th be the collection of rectangular elements obtained from a tensor product grid on Ω such
that Ω̄ = ∪T∈Th T . Then DFh = ∇⊥Wh.

Proof.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–23
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To prove this lemma, we show that the equality holds for the domain [0, 1]2. From this result,
one can easily show that it holds for an arbitrary rectangular element, and hence, for a domain
that can be expressed as the union of rectangular elements.

Proving the equality for Ω = [0, 1]2 requires that we show inclusion in both directions. The
proof of ∇⊥Wh ⊂ DFh is simple and is left for the reader to verify. We do note that for
w ∈Wh, ∇⊥w ∈MTh only holds on a tensor product grid. (See Remark above.)

To prove that DFh ⊂ ∇⊥Wh, we must show that, for any δ = (δ1, δ2)
t ∈ DFh, there exists

a w∗ ∈Wh such that δ = ∇⊥w∗. This is accomplished by construction. Before w∗ is defined,
a useful alternate representation of δ1 is introduced. The expression is based on the fact that,
by definition,

∂x δ1 = −∂y δ2.
By integrating the above equation over [0, x] we get

δ1(x, y) = −∂y
∫ x

0

δ2(ξ, y) dξ + δ1(0, y). (15)

Subsequently, set

w(x, y) = w1(x, y) + w2(x, y) := −
x∫

0

δ2(ξ, y) d ξ +

y∫

0

δ1(0, η) d η. (16)

We must show that

δ1(x, y) = ∂y w(x, y) and δ2(x, y) = −∂x w(x, y) (17)

and, in addition, that w(x, y) ∈Wh.
For the first equality of (17), the definition of w in (16) yields

δ1(x, y) = −∂y
x∫

0

δ2(ξ, y) d ξ + δ1(0, y). (18)

As established in (15), the right hand side of (18) is simply an alternative expression for
δ1(x, y). For the second equality of (17), we simply note that by definition of w, and the
fundamental theorem of calculus, δ2 = ∂x w. Finally, we need to confirm that w ∈Wh.

Recall the meaning of w ∈ C1,1(Ω): w is a C1 function in x and in y. This can be established
by looking at each summand of (16). The first summand, w1, is C1 in y because δ2(x, y) has
the required continuity and the integration does not affect this continuity. Next, it is C1 in x
because δ2(x, y) is C0 in x (and since the x-derivative of w is δ2). A similar line of reasoning
implies w2 is also C1, and therefore,

w(x, y) ∈ C1(Ω). (19)

The proves that there exists a w∗ ∈Wh such that δ = ∇⊥w∗. 2

We proved Lemma 3.1 for the case that no boundary conditions are enforced on the FE space.
If boundary conditions are enforced, as in MTh

0 or MTh
00, we do need a different pre-image

space for the grad-perp operator to generate DFh
0 and DFh

00. The two appropriate subspaces
of Wh are given by

Wh
0 =

{
w ∈Wh : w = 0 on Γ

}

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–23
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and
Wh
00 =

{
w ∈Wh : w = 0 and n · ∇w = 0 on Γ

}
.

With these definitions, we state an additional lemma that defines DFh
0 and DFh

00.

Lemma 3.2. Under the same conditions as Lemma 3.1 we have that DFh
0 = ∇⊥Wh

0 and that
DFh

00 = ∇⊥Wh
00.

Proof

We do not prove this lemma with the same rigor as with the previous one. Instead, we just
provide the reader with the definition of w on [0, 1]2 and leave out the remaining details. On
that note, we have

w(x, y) =

x∫

0

δ2(ξ, y) d ξ (20)

for both cases in question. The boundary conditions on δ plus (15) yields the boundary
conditions on w. 2

To define a discrete Helmholtz decomposition for the subspaces of MTh, we investigate the
structure of the L2-orthogonal complement of the div-free components. To that end, a third
FE space is introduced. For the same mesh, Ωh, and elements, Th, consider the bi-Lagrangian
quadratic space

Sh :=
{
sh : sh ∈ C0(Ω) and sh|T ∈ P2(Ix)⊗ P2(Iy), ∀ T ∈ Th

}
(21)

and also let Ŝh := Sh/IR. Through Ŝh we define the discrete gradient operator with regards to
MTh

0 .

Definition 3.3. For sh ∈ Ŝh, define ∇h s
h ∈MTh

0 by
〈
∇h s

h,vh
〉
= −

〈
sh,divvh

〉
, ∀ vh ∈MTh

0 .

The element ∇h s
h is a uniquely determined because the functional

〈
sh,div vh

〉
is well defined

and continuous, which allows us to invoke the Riesz Representation Theorem [6]. A definition
of ∇h also exists with regards to MTh

00 by replacing MTh
0 with MTh

00 and then replacing Ŝh

with Sh0 = Sh ∩H1
0 .

Definition 3.3 implies that, in both MTh
0 and MTh

00, discrete gradients are orthogonal to
div-free elements with respect to the L2 inner product, and additionally, with respect to the
inner product Λ(·, ·) seen in (3). This leads to the discrete Helmholtz decomposition, which is
the next theorem. The proof of this theorem mimics the proof used in establishing a similar
result for the RT spaces (e.g., [3]). We prove this for the more general case of MTh

0 . A similar
proof holds for MTh

00.

Theorem 3.4. (Discrete Helmholtz Decomposition) Assume that Th is the collection of
rectangular elements obtained from a tensor product grid as in Lemma 3.1 and that Ω̄ =
∪T∈Th T . Then MTh

0 admits the following L2-orthogonal decomposition:

MTh
0 = ∇h Ŝ

h ⊕ ∇⊥Wh
0 . (22)

Proof

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–23
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The L2 orthogonality is proved first. Let sh ∈ Ŝh and wh ∈ Wh
0 such that ∇h s

h ∈ ∇h Ŝ
h

and ∇⊥ wh ∈ ∇⊥Wh
0 . Then, by definition of ∇h,

〈
∇h s

h,∇⊥ wh
〉
=
〈
sh,∇ · (∇⊥ wh)

〉
= 0.

Thus, ∇h Ŝ
h ⊥L2 ∇⊥Wh.

Now equality is proved by showing inclusion in both directions. We first note that ∇h Ŝ
h ⊂

MTh
0 , which is true by definition, and ∇⊥Wh

0 ⊂ MTh
0 , which is guaranteed by Lemma 3.2.

Then, ∇h Ŝ
h + ∇⊥Wh

0 ⊂ MTh
0 . To get inclusion in the other direction, let vh ∈ MTh

0 and
set gh to be the projection of vh onto ∇h Ŝ

h, i.e.,
〈
vh − gh,∇h s

h
〉
= 0, ∀ sh ∈ Ŝh.

Using Definition 3.3, we can say
〈
∇ · (vh − gh), sh

〉
= 0, ∀ sh ∈ Ŝh.

Since ∇ · (vh − gh) ∈ Ŝh by definition, this implies that ∇ · (vh − gh) = 0. As a result,
vh − gh ⊂ ∇⊥Wh

0 . Since v
h was arbitrarily chosen,

MTh
0 ⊂ ∇h Ŝ

h ⊕ ∇⊥Wh
0 ,

which proves (22). 2

According to Theorem 3.4, for any u ∈MTh
0 , there exists a mapping Gh : MTh

0 → Ŝh and
Fh :MTh

0 →Wh
0 such that

u = ∇h(Ghu) +∇⊥ (Fhu). (23)

Notice that the two components of this decomposition are not orthogonal with respect to the
Aε(·, ·) inner product for ε greater than zero. Also, if we consider the case MTh

00, then we
obtain a similar decomposition in terms of Wh

00 and Sh0 .

3.3. Error estimates

Let Πhv ∈MTh be the interpolant of v as in (13). Let c and C denote arbitrary constants,
which may depend on certain domain properties but not on mesh sizes or the parameter ε.
The following lemma states without proof a standard interpolation result for Πh.

Lemma 3.5. Assume that Th is a collection of rectangular elements and that Ω̄ = ∪T∈Th T .
Set h = maxT∈Th hT and let Πh be the interpolation operator of MTh. For v ∈ Hk(Ω),
2 ≤ k ≤ 3, we get the following bound:

‖v −Πhv‖m,Ω ≤ Chk−m |v|k,Ω, (24)

where 0 ≤ m < k.
Proof

The proof uses standard techniques that are employed in proofs of similar claims for tensor
product finite element spaces. See [3] or [6] for an outline of such a proof. 2

A bound on the divergence of the interpolation error requires the inequality

‖divv‖0,Ω ≤ ‖divv‖0,Ω + ‖∇ × v‖0,Ω ≤
√
2|v|1,Ω.
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ROBUST METHOD FOR DIV-FREE PROBLEMS IN H1 11

The error bound for the divergence, using this inequality, is

‖div(v −Πhv)‖0,Ω ≤ Chk−1 |v|k,Ω, (25)

where 2 ≤ k ≤ 3 and
√
2 has been absorbed into C.

In the remainder of this section, we consider (1) with homogeneous boundary conditions.
Using (7), (24), and (25), convergence of the approximate solution in FE space MTh

00 to the
exact solution as h→ 0 is established in terms of the ‖ · ‖ε norm.

Theorem 3.6. Assume that Th is a collection of rectangular elements and that Ω̄ = ∪T∈Th T .
Then set h = maxT∈Th hT . Next, assume that solution u of (5) is in Hk(Ω) ∩ H1

0(Ω) for
k = 2, 3. If uh ∈MTh

00 is the solution of (6), we have that the error, eh := u− uh, satisfies

‖eh‖ε,Ω ≤ Chk−1 |u|k,Ω. (26)

Proof

The proof follows from (7), the observation that

inf
vh∈MTh

00

‖u− vh‖ε,Ω ≤ ‖u−Πh u‖ε,Ω,

and the following estimates, using (24) and (25):

‖u−Πh u‖2ε,Ω = ‖u−Πh u‖20,Ω + ε |u−Πh u|21,Ω + ‖div(u−Πh u)‖20,Ω
≤ C1h

2k|u|2k,Ω + C2εh
2k−2|u|2k,Ω + C3h

2k−2|u|2k,Ω
≤ Ch2k−2 |u|2k,Ω.

Taking the square root of both sides completes the proof. 2

We should note that, numerically, we see a better order of convergence of the error for ε ≈ 0
than is implied by the theorem above. This is a result of our inability to derive a tighter bound
on the divergence of the error than that which is seen in (25).

4. MULTIGRID ALGORITHM

In this section, we introduce an effective multigrid algorithm that can be used to solve the
discrete systems arising from (6) with Vh

0 =MTh
00. To this end, assume a coarse triangulation

T0 of Ω and let MT0 denote MTh
00 restricted to this coarse mesh. By halving the spatial

cells in each direction, we get a series of finer meshes and richer FE spaces. The sequence of
successively finer spaces will be denoted by

MT0 ⊂MT1 ⊂ · · · ⊂MTJ−1 ⊂MTJ . (27)

All coarse grid problems are realized by simply restricting variational problem (6) to the coarser
spaces. In this context, interpolation becomes simple injection and restriction is the transpose
of interpolation (see [3]). In the remainder of this section, we describe an overlapping block
Jacobi and an overlapping block Gauss-Seidel relaxation technique, which eliminates high
frequency div-free error.

For j ∈ {1, ..., J}, consider MTj defined on triangulation Tj . Let Nj correspond to vertices
of the rectangular mesh. Let the set Tj,ν be the collection of elements with common vertex ν,

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–23
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12 T. AUSTIN, T. MANTEUFFEL, AND S. MCCORMICK

and Ωj,ν be the interior of the subdomain formed by the union of these elements. Now, define
MTj,ν as

MTj,ν :=
{
v ∈MTh : supp{v} ⊆ Ω̄j,ν

}
,

which is the subspace of MTj with support in Ωj,ν .
Next, we rewrite discrete problem (6) as an operator equation. Define the discrete linear

operator Aε
j :MTj →MTj by

Aε(u,v) =
〈
Aε
j u,v

〉
, ∀ u,v ∈MTj . (28)

Thus, the discrete problem on the finest grid is Aε
J xJ = bJ , where bJ ∈MTJ is defined by

〈bJ ,v〉 = 〈f ,v〉 ∀v ∈MTJ .

Also, define projection operators IPj : H
1 →MTj and Qj : L

2 →MTj according to

Aε(IPj u,v) = Aε(u,v), ∀ v ∈MTj (29)

and
〈Qj u,v〉 = 〈u,v〉 , ∀ v ∈MTj . (30)

Locally we use projection operators corresponding to subdomains Ωj,ν in the following way:
IPj,ν : H1 →MTj,ν represents a local solve on Ωj,ν according to

Aε(IPj,νv,w) = Aε(v,w), ∀ w ∈MTj,ν . (31)

This is a local solve in the sense that IPj,ν v is the local solution of a problem with right-hand
side given by Aε

j v.
Before we define the additive smoother, we let κ be the maximum number of subdomains

Ωj,ν in which any point x ∈ Ω is included. The additive smoothing operator, Rj , is then

Rj := η
∑

ν∈Nj

IPj,ν (A
ε
j)
−1 (32)

with scaling factor η, which must be less than 1/κ to ensure that Rj is a contraction.

Remark 1: The additive smoothing operator Rj is L2-symmetric and positive definite.

Remark 2: The definition of Rj yields

η
〈
R−1j v,v

〉
= inf

vν∈MTj,ν

v=
∑

ν∈Nj

vν

∑
Aε(vν ,vν),

which is proved in Appendix B of [1].

Remark 3: The work involved in performing the action of Rj involves inverting a 12 × 12
symmetric positive definite matrix associated with each vertex ν ∈ Nj except at boundaries
where the work is less.

A nonsymmetric multiplicative version of Rj , which we call R̂j is defined algorithmically.
To begin, assume an ordering of the vertices, νl ∈ Nj , l = 1, . . . , Nj , and write IPj,νl as IPj,l
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ROBUST METHOD FOR DIV-FREE PROBLEMS IN H1 13

for now. Let the current iterate be given by xk with residual rk. Then the next iterate, xk+1,
is the last step, xk+1Nj

, of the following sweep:

xk+1l+1 = xkl + IPj,l (A
ε
j)
−1 rkl for l = 1, 2, . . . , Nj , (33)

where rkl = (b − Aε
j x

k
l ) and ekl = (Aε

j)
−1rkl . This algorithm defines the nonsymmetric

multiplicative operator. A version that reverses the ordering of the smoothing of the sweep on
the back end of the V-cycle yields a symmetric cycle.

To take into account the extra work required in performing the block relaxation, we introduce
the Work Unit (WU), defined as the number of floating point operations to calculate the
residual vector. One sweep of a pointwise smoother requires one WU. In comparison, due to
the overlap of the subdomains Ωj,ν , we need approximately 1.5 WUs to complete a sweep of
the grid with the block relaxation.

With definitions of transfer operators and a relaxation approach, we can now use any of the
multigrid cyclic strategies (e. g. W-cycles, V(µ1,µ2)-cycles, or FMG; see [8]). In our numerical
results, we work solely with a standard V-cycle using m pre-smoothings of the nonsymmetric
multiplicative relaxation operator and m post-smoothings of the adjoint of the nonsymmetric
operator. Letting Sj denote one of the relaxation operators, Ijj−1 denote the interpolation

operator, and Ij−1j denote the restriction operator, the standard V(m,m)-cycle is defined
recursively:

Let B0 = (Aε
0)
−1

. For j = 1, . . . , J , define Bj f for f ∈MTj as follows:

(1) Set u0 = 0 and r0 = 0.
(2) (Pre-smoothing) Define ul for l = 1, . . . ,m by

ul = ul−1 + Sj (f −Aε
j u

l−1).

(3) Define wm = um + I
j
j−1 q, where

q = Bj−1

[
Ij−1j (f −Aε

j u
m)
]
.

(4) (Post-Smoothing) Define wl for l = m+ 1, . . . , 2m by

wl = wl−1 + STj (f −Aε
j w

l−1).

(5) Set Bj f = w2m.

Then BJ is a multilevel preconditioner for the discrete problem Aε
J xJ = bJ .

In the next section, we present numerical convergence results that were generated for a
test problem posed on the unit square. Homogeneous data, i.e. zero right-hand side and zero
Dirichlet boundary data, were used and the iterations began with a random initial guess for
the interior unknowns.

5. NUMERICAL MULTILEVEL CONVERGENCE RESULTS

Asymptotic convergence rates are presented in Tables I and II for the V(1,1)-cycle with
respect to two types of relaxation: either pointwise Gauss-Seidel relaxation or nonsymmetric
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14 T. AUSTIN, T. MANTEUFFEL, AND S. MCCORMICK

Table I. Asymptotic convergence results for V-cycle where ε = 10−1

NL hF NU σB ωB σ̂B σP ωP σ̂P

2 1/4 112 0.209 4.0 0.676 0.652 2.67 0.852
3 1/8 480 0.212 4.0 0.679 0.715 2.67 0.882
4 1/16 1984 0.214 4.0 0.680 0.732 2.67 0.890
5 1/32 8064 0.215 4.0 0.681 0.736 2.67 0.892
6 1/64 32e3 0.216 4.0 0.682 0.737 2.67 0.892
7 1/128 13e4 0.216 4.0 0.682 0.738 2.67 0.892
8 1/256 52e4 0.216 4.0 0.682 0.739 2.67 0.892

Table II. Asymptotic convergence results for V-cycle where ε = 10−8

NL hF NU σB ωB σ̂B σP ωP σ̂P

2 1/4 112 0.351 4.0 0.770 0.962 2.67 0.985
3 1/8 480 0.472 4.0 0.829 0.984 2.67 0.994
4 1/16 1984 0.502 4.0 0.842 0.993 2.67 0.997
5 1/32 8064 0.508 4.0 0.844 0.995 2.67 0.998
6 1/64 32e3 0.509 4.0 0.845 0.999 2.67 0.999
7 1/128 13e4 0.506 4.0 0.843 0.999 2.67 0.999
8 1/256 52e4 0.497 4.0 0.840 0.999 2.67 0.999

multiplicative block relaxation. Lexicographic ordering is used in both cases. Note that
lexicographic ordering for block relaxation refers to how we sweep over the vertices, since
each local group solve can be associated with a vertex in the same way that we defined MTj,ν

with reference to vertex ν in section 4.

In both tables, NL corresponds to the number of levels in the multigrid algorithm and
then hF = 1/2NL corresponds to the uniform fine grid mesh size. Note that a uniform
grid is used in both directions. The third column shows the number of unknowns, NU . The
asymptotic convergence factor, σB , in column four provide an asymptotic measure of reduction
in the energy norm of the error from a V-cycle using the nonsymmetric block smoother. In
column five, we present ωB , the number of WUs to execute one complete V-cycle using the
nonsymmetric block relaxation. We present the effective convergence factor, σ̂B := (σB)

1/wB in
column six. In the final three columns, we have the convergence factor, number of WUs, and the
effective convergence factor, σ̂P := (σP )

1/wP , for a V(1,1)-cycle using pointwise Gauss-Seidel.

In Figure 3, we consider a wide range of ε values for a fixed mesh size for the original ε-
dependent problem, and for the ε-dependent problem with the identity term removed. Two
observations can be made in response to these results. First, it appears that convergence is
bounded as ε approaches zero. This, in addition to Tables I and II, indicate that our multigrid
method is robust in ε and h. Second, the convergence results that we obtained when the
identity term was removed imply that convergence of the original problem, as ε approaches
zero, is mostly dependent on the resulting mass matrix term. Hence, in this limit, the best
convergence that we can obtain is limited by what convergence we can get for the mass matrix
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Figure 3. Multigrid Convergence Factor for fixed h and variable ε using Block Multiplicative Relaxation
Operator

alone. As we can see, when the mass matrix is removed, convergence is greatly improved as ε
goes to zero.

6. MULTILEVEL CONVERGENCE THEORY

In this section, we develop convergence theory for the multilevel method applied to the discrete
equations that arise from a FE discretization of (2) with MTh

0 . There are two reasons that we
concentrate on (2) instead of the more general problem (1). First, a proof of the more general
case where 0 < ε ≤ 1 remains an open problem. Second, the numerical convergence results
from Fig. 3, and Tables I and II, suggest that convergence appears to be bounded independent
of h, but deteriorating with decreasing ε. Hence, if convergence is proved to be independent
of h for ε = 0, that suggests the same should hold for ε > 0. For ε bounded away from zero,
the results can be established using standard techniques (cf. [3] or [4]).

Since we are studying a slightly different system of equations when ε = 0, we make
minor changes in notation for certain spaces and operators. To begin, any reference to MTj

necessarily assumes that MTj ⊂ MTh
0 . Next, the operators in (28) and (29) are redefined

using the inner product Λ(·, ·). The discrete linear operator, Λj , is given by

Λ(u,v) = 〈Λj u,v〉 , ∀ u,v ∈MTj , (34)

and thus, the discrete problem on the finest grid is ΛJ xJ = bJ . The projection operator,
IPj : H(div)→MTj−1, is given by

Λ(IPj u,v) = Λ(u,v), ∀ v ∈MTj . (35)

We also have a new definition of the operator IPj,ν that is described in (31). The operator
IPj,ν was a local projection operator with respect to Aε(·, ·), but here it is a local projection
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16 T. AUSTIN, T. MANTEUFFEL, AND S. MCCORMICK

operator with respect to Λ(·, ·). Therefore, the additive smoothing operator (32) becomes

Rj := η
∑

ν∈Nj

IPj,ν Λ
−1
j . (36)

Given the interpolation and restrictions operators from Section 4, in addition to (36), we have
the components needed to define the multilevel preconditioner, Bj , for the equation ΛjxJ = bJ .

In the remainder of this section, we prove convergence of the iteration using the
preconditioned method that uses the additive smoothing operator (36) and then separately for
the symmetric multiplicative counterpart to Rj . We make use of the following theorem, which
can be found in Appendix B of [1]. Here, Sj represents one of the aforementioned relaxation
operators.

Theorem 6.1. Suppose that, for each j = 1, . . . , J , relaxation operator Sj satisfies

Λ( [I− Sj Λj ]u,u ) ≥ 0, ∀ u ∈MTj , (37)

and
(S−1j [I− IPj−1]u, [I− IPj−1]u) ≤ αΛ( [I− IPj−1]u, [I− IPj−1]u ),

∀ u ∈MTj
(38)

where α > 0 is a constant. Then given m pre-smoothings and m post-smoothings of Sj on level
j for j = 1, ..., J , multigrid operator BJ satisfies

0 ≤ Λ ([I− BJΛJ ]u,u) ≤ γ Λ (u,u) , ∀ u ∈MTJ , (39)

where γ = α
α+m .

Proof

See Appendix B of [1]. 2

Since the result in Theorem 6.1 depends upon inequalities (37) and (38), the remainder of
this section will be devoted to establishing these claims. We begin with (37) and (38) for the
symmetric additive relaxation operator, Rj . Then these results are employed to confirm that

both properties also hold for the symmetric multiplicative relaxation operator, R̂j .
Before a proof of (37) or (38) can be established, we must establish two lemmas that are

needed in proving the the second inequality. In both lemmas, we assume a coarse triangulation,
Tj−1, and a fine triangulation, Tj , which is obtained from Tj−1 by halving the spatial cells in
each direction. Each triangulation is associated with a mesh size, hj−1 and hj , respectively.
Also, MTj−1 and MTj are the finite element spaces restricted to these meshes. Lastly, let ∇j

denote the weak gradient operator relative to MTj .

Lemma 6.2. Let u ∈ MTj and let v = [I− IPj−1]u ∈ MTj have a discrete Helmholtz
decomposition given by v = ∇j s + ∇⊥ w, where s ∈ Sj/IR and w ∈ W0j := Wj ∩ H10. Then
we have

‖∇j s‖ ≤ C hj−1‖v‖H(div) (40)

and
‖w‖ ≤ C hj−1‖v‖H(div), (41)

where C represents an arbitrary positive constants that only depends on domain Ω.
Proof
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To prove (40), put ξj = Λ−1j (∇j s) ∈ ∇h S
h ⊂MTh. Therefore,

‖∇j s‖2 =
〈
Λj∇j s,Λ

−1
j (∇j s)

〉
= Λ(∇j s, ξj) (42)

Furthermore,
Λ(∇j s, ξj) = Λ(∇j s+∇⊥w, ξj) = Λ(u− IPj−1u, ξj). (43)

Next, define ξj−1 as the solution of the equation

Λ(ξj−1 − ξj ,w) = 0, ∀ w ∈MTj−1.

Approximation theory (cf. [3]) yields

‖ξj − ξj−1‖H(div) ≤ C hj−1 ‖Λjξj‖, (44)

for C an arbitrary constant. Using the right-hand side of (43), the bound in (44), and the
definition of ξj , we have

Λ(u− IPj−1u, ξj) = Λ(u− IPj−1u, ξj − ξj−1)

≤ ‖v‖H(div) ‖ξj − ξj−1‖H(div)
≤ C hj−1‖v‖H(div) ‖Λj ξj‖
= C hj−1‖v‖H(div) ‖∇j s‖

Using (42) and (43) we then get

‖∇j s‖ ≤ C hj−1 ‖v‖H(div),

which establishes (40).
To prove (41), we first remark that w in (41) has the orthogonality property

(∇⊥w,∇⊥ŵ) = 0 ∀ ŵ ∈Wj−1.

This implies a standard duality argument applies (cf. [3]), and consequently,

‖w‖ ≤ C hj−1‖∇⊥w‖.

The inequality (41) is automatic with the observation that

‖∇⊥w‖ = ‖∇⊥w‖H(div) ≤ ‖v‖H(div).

Therefore, we have proven (40) and (41). 2

Next, we prove an additional bound on the H1-seminorm of the weak gradient component.
The proof requires the assumption that the mesh size of consecutive levels, i.e. MTj and
MTj−1, differ by a bounded factor, i.e., hj−1 = phj where p typically equals two.

Lemma 6.3. Let u ∈ MTj and let v = [I− IPj−1]u ∈ MTj have a discrete Helmholtz
decomposition given by v = ∇j s + ∇⊥ w, where s ∈ Sj/IR and w ∈ W0j := Wj ∩ H10. Hence,
we have

|∇j s|1 ≤ C ‖v‖H(div) (45)

for a positive constant C that only depends on domain Ω.
Proof

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–23
Prepared using nlaauth.cls



18 T. AUSTIN, T. MANTEUFFEL, AND S. MCCORMICK

First, an inverse estimate (cf. [3]) yields the inequality

|∇j s|1 ≤
C̄

hj
‖∇h s‖

for some constant C̄. Using (40) in Lemma 6.2, we have

|∇j s|1 ≤ C̄
hj−1
hj

‖v‖H(div).

Then we can write

|∇j s|1 ≤ C̄ p ‖v‖H(div) ≤ C ‖v‖H(div),
where C depends only on domain Ω for fixed p. 2

6.1. Verification of (37) for Symmetric Additive Relaxation Operator

With the expansion Rj Λj = η
∑

ν∈Nj

IPj,ν , we have, for u ∈MTj ,

Λ (Rj Λju,u) = η
∑

ν∈Nj

Λ (IPj,νu,u) ,

which gives

Λ ([I−Rj Λj ]u,u) = Λ(u,u) − η
∑

ν∈Nj

Λ (IPj,νu,u) . (46)

The Cauchy-Schwarz inequality implies

Λ (IPj,νu,u) = ‖IPj,νu‖2H(div;Ωj,ν) ≤ ‖IPj,νu‖H(div;Ωj,ν) ‖u‖H(div;Ωj,ν),

which is equivalent to Λ (IPj,νu,u) ≤ ‖u‖2H(div;Ωj,ν). This in turn yields the bound

∑

ν∈Nj

Λ (IPj,νu,u) ≤
∑

ν∈Nj

‖u‖2H(div;Ων) ≤ κΛ(u,u), (47)

where κ is the maximum overlap of subdomains Ωj,ν . In this 2D setting, κ = 4. Finally, using
(46) and (47), we have

Λ ([I−Rj Λj ]u,u) ≥ (1− κ η) Λ(u,u) > 0,

since η ∈ [0, 1κ ) implies that 1−κ η > 0. This is where our restrictions on the choice of η arises.

6.2. Verification of (38) for Symmetric Additive Relaxation Operator

To begin the verification of (38), keep in mind the equality in Remark 2 given by

η
〈
R−1j v,v

〉
= inf

vν∈MTj,ν

v=
∑

ν∈Nj

vν

∑

ν∈Nj

Λ(vν ,vν). (48)
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With this at our disposal, we use the discrete Helmholtz decomposition to write

v = ∇js+∇⊥ w ∈MT0j ,

for s ∈ Sj/IR and w ∈ W0j . Denote v̄ = ∇j s and ṽ = ∇⊥w and recall that v̄ ⊥ ṽ in
L2 and H(div). This implies that Λ(v̄, v̄) + Λ(ṽ, ṽ) = Λ(v,v). The remainder of the proof
proceeds by independently establishing the two inequalities,

∑

ν∈Nj

Λ(ṽν , ṽν) ≤ C Λ(v,v) (49)

and ∑

ν∈Nj

Λ(v̄ν , v̄ν) ≤ C Λ(v,v), (50)

for some decomposition of ṽ and v̄ given by

ṽ :=
∑

ν∈Nj

ṽν and v̄ :=
∑

ν∈Nj

v̄ν . (51)

To define such a decomposition, we introduce a partition of unity, {θν}ν∈Nj
, of Ω. Such a

partition of unity can be defined with the following properties:
∑

ν∈Nj

θν = 1 and 0 ≤ θν ≤ 1 (52)

‖∇θν‖L∞(Ωj,ν) ≤ K0 h
−1
j−1, (53)

where K0 is independent of the mesh. For example, from (14) we may use Hermite basis
functions of the first kind to construct θν . Hence, let θν be the basis function in W0j that has
value one at node ν and zero at every other node, and has derivative equal to zero at all nodes.
It is easy to show that such a partition satisfies (52) and (53). The proof now continues by
using this partition.

We begin with proving (49) by noting that ṽ = ∇⊥w for some w ∈ W0j . Let wν =
IWj (θν w) ∈W0j , where IWj is the nodal interpolant for Wj . Thus we have

ṽ = ∇⊥w =
∑

ν∈Nj

∇⊥wν =
∑

ν∈Nj

ṽν .

Note that Λ(ṽν , ṽν) = ‖∇⊥wν‖2 = |wν |21. In addition, recall that Ωj,ν is the union of a
number of elements T ∈ Th. We evaluate |wν |21 only over T ∈ Th and apply an inverse estimate
for Wj to obtain

|wν |21,T = |IWj (θνw)|21,T ≤
C

h2j
‖IWj (θνw)‖20,T , (54)

where C is independent of the mesh. Because θνw is the product of polynomials of degree six
in x and y and IWj interpolates to a lower-order polynomial, we have

‖IWj (θνw)‖ 0,T ≤ C ‖θνw‖ 0,T ≤ C ‖w‖ 0,T . (55)

With (54) and (55), we get

|wν |21,T ≤
C

h2j
‖w‖20,T . (56)
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Summing over every T ∈ Th
⋂

Ωj,ν yields

|wν |21,Ωj,ν ≤
C

h2j
‖w‖20,Ωj,ν ,

which implies ∑

ν∈Nj

|wν |21,Ω ≤ C
κ

h2j
‖w‖20,Ω,

where κ is the maximum overlap and C is independent of hj . Recollecting inequality (41) of
Lemma 6.2 and assuming that hj−1 = phj yields

∑

ν∈Nj

Λ(ṽν , ṽν) =
∑

ν∈Nj

|wν |21,Ω ≤ C ‖v‖2H(div;Ω) ≤ C Λ(v,v),

where κ is absorbed into C. Consequently, inequality (49) has been proven.
The proof of (50) is similar, but it relies on the standard interpolation operator for MTj ,

which we shall denote by Πj . Let v̄ν := Πj (θν v̄) such that v̄ =
∑
v̄ν . Again, we separately

consider the two terms that define inner product: 〈·, ·〉 and 〈div ·,div ·〉. Consider first the
zeroth-order term. Again, because θν v̄ consists of polynomial of degree six in x and y and Πj

interpolates to a lower-order polynomial, we have

‖v̄ν‖20,T = ‖Πj (θν v̄)‖0,T ≤ C‖θν v̄‖0,T ≤ C‖v̄‖0,T (57)

Taking a sum over T ∈ Tj
⋂

Ωj,ν yields

‖v̄ν‖20,Ωj,ν ≤ C ‖v̄‖20,Ωj,ν .

Taking the sum next over all Ωj,ν , we get the final estimate

∑

ν∈Nj

‖v̄ν‖20 ≤ κC ‖v̄‖20, (58)

where κ and C are independent of mesh size. Later we will refer to the product of κ and C as
just C.

Consider next the higher-order term and the fact that

〈divv,divv〉 = ‖divv‖2 ≤
√
2 |v|21. (59)

We can also express this relationship over T as

‖div v̄ν‖20,T ≤
√
2 |v̄ν |21,T .

With (56) in mind, which uses an inverse inequality, we recall that we can write

|v̄ν |21,T ≤
C

h2j−1
‖v̄‖20,T ,

for some constant C. Summing over every T ∈ Tj
⋂

Ωj,ν yields

‖div v̄ν‖21,Ωj,ν ≤
√
2 |v̄ν |21,Ωj,ν ≤

C

h2j
‖v̄‖20,Ωj,ν ,
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where
√
2 is merged into C. Summing over every Ωj,ν and applying Lemma 6.2 yields

∑

ν∈Nj

‖div v̄ν‖20 ≤ C
κ

h2j
‖v̄‖20 ≤ C‖v‖2H(div). (60)

With (58) and (60) we have
∑

ν∈Nj

Λ(v̄ν , v̄ν) =
∑

ν∈Nj

‖v̄ν‖2 + ‖div v̄ν‖2

≤ CΛ(v,v).

Hence, we have proved both (49) and (50) and therefore verified (38), which completes the
proof. Note that proving (49) and (50) guarantees that the additive relaxation operator
sufficiently reduces error orthogonal to the coarse grid, i.e. all high-frequency error components.

6.3. Verification of (37) and (38) for Symmetric Multiplicative Relaxation Operator

For the symmetric multiplicative relaxation operator, we defineKj = (I−R̂j Λj), the reduction
in error from the operator defined by (33). With this definition, we setK∗

jKj to be the reduction

in the error from the symmetric multiplicative relaxation operator, R̃j , which is produced by
following a sweep of the nonsymmetric smoother with a sweep that goes over the vertices of
the mesh in a reverse order. Here K∗

j is the adjoint with respect to the Λ(·, ·) inner product.
Note that K∗jKj is Λ(·, ·)-symmetric; it is also positive definite since K∗

j is the Λ-conjugate of

the nonsingular operator Kj . These results imply condition (37) is guaranteed for R̃j .
To guarantee condition (38), we refer to a result from [1]. In this paper, the authors prove

η
〈
R̃jv,v

〉
≥ κ−2 〈Rjv,v〉 ,

where κ is as previously defined. Because κ = 4 for the subdomains {Ωj,ν}, we can write

〈Rjv,v〉 ≤ 16 η
〈
R̃jv,v

〉
, for all v ∈ MTj , (61)

for the MT elements. We subsequently use (61) to verify (38) for R̃j .
Let v = [I− IPj−1] u ∈ MTj . As in the proof of Theorem 6.1, let v be decomposed as∑
vν , for vν ∈MTj,ν in such a way as to satisfy

∑

ν∈Nj

Λ(vν ,vν) ≤ C Λ(v,v). (62)

Then the sequence of inequalities follows:

(R̃−1j v,v) =
∑

ν∈Nj

Λ(IPj,ν Λ
−1
j R̃−1j v,vν)

≤


∑

ν∈Nj

Λ(IPj,ν Λ
−1
j R̃−1j v,Λ−1j R̃−1j v)



1/2 

∑

ν∈Nj

Λ(vν ,vν)



1/2

= η−1/2 (Rj R̃
−1
j v, R̃−1j v)1/2


∑

ν∈Nj

Λ(vν ,vν)



1/2

.
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We now use (61) and (62) to say

(R̃−1j v,v) ≤ C (R̃−1j v,v)1/2 Λ(v,v)1/2,

which implies (38) for the symmetric multiplicative relaxation operator.

7. FINAL REMARKS

We have presented a method for both accurately discretizing and robustly solving variational
problem (6). Although we provided a rigorous proof of convergence of the multigrid algorithm
for the more difficult problem with ε = 0 and fewer boundary conditions, theory that
establishes convergence for all ε in (0, 1] remains an open problem. Numerical results imply
that convergence factors improve as ε is increased. A possible extension of this work would
be to establish a C1 finite element space on triangular meshes, construct a FE space MT in
a manner similar to section 3, and then a multigrid algorithm like that described in section
4. Another important extension is to see how this method performs for problems that have
variable, and in particular, discontinuous ε.

REFERENCES

1. Arnold DN, Falk RS, and Winther R. Preconditioning in H(div) and applications. Mathematics of
Computation 66(219):957-984

2. Austin TM. Advances on a Scaled Least-Squares Method for the 3-D Linear Boltzmann Equation. University
of Colorado Thesis University of Colorado: 2001.

3. Braess D. Finite Elements Cambridge University Press: Cambridge, 1997.
4. Bramble JH. Multigrid Methods Pitman Research Notes in Mathematics Series: 1993.
5. Brandt A. Multigrid Techniques: 1984 Guide, with Applications to Fluid Dynamics ISBN-3-88457-081-1;

GMD-Studien Nr. 85: 1984.
6. Brenner SC and Scott LR. The Mathematical Theory of Finite Element Methods Springer: New York, 1994.
7. Brezzi F and Fortin M. Mixed and Hybrid Finite Element Methods Springer-Verlag: 1991.
8. Briggs WL, Henson VE, and McCormick SF. A Multigrid Tutorial: Second Edition
9. Girault V and Raviart P-A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms

Springer-Verlag: 1986. SIAM: Philadelphia, 2001.
10. Hiptmair R and Hoppe RHW. Multilevel methods for mixed finite elements in three dimensions.

Numerische Mathematik 82:253-279.
11. Manteuffel TA, Ressel K, and Starke G. A boundary functional for the least-squares finite element solution

of neutron transport problems. SIAM Journal on Numerical Analysis 37:556-586.
12. Mardal KA, Tai XC, and Winther R. A robust finite element method for Darcy-Stokes Flow. SIAM Journal

on Numerical Analysis 40(5):1605-1631
13. Vassilevski PS and Wang J. Multilevel iterative methods for mixed finite element discretizations of elliptic

problems. Numerische Mathematik 63(4):503-520.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–23
Prepared using nlaauth.cls


