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Abstract. A fully variational approach is developed for solving nonlinear elliptic equations
that enables accurate discretization and fast solution methods. The equations are converted to a
first-order system that is then linearized via Newton’s method. First-order system least squares
(FOSLS) is used to formulate and discretize the Newton step, and the resulting matrix equation is
solved using algebraic multigrid (AMG). The approach is coupled with nested iteration to provide an
accurate initial guess for finer levels using coarse-level computation. A general theory is developed
that confirms the usual full multigrid efficiency: accuracy comparable to the finest-level discretization
is achieved at a cost proportional to the number of finest-level degrees of freedom. In a companion
paper, the theory is applied to elliptic grid generation (EGG) and supported by numerical results.
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1. Introduction. We develop a theoretical foundation for a method for solving
nonlinear elliptic equations that combines first-order system least squares (FOSLS)
with Newton’s method, algebraic multigrid (AMG), and nested iteration (NI). The
algorithm achieves accuracy comparable to the finest-level discretization at a cost pro-
portional to the number of finest-level degrees of freedom. In a companion paper [17],
we apply this theory to the elliptic grid generation equations (EGG) and numerically
validate the theory established below.

Our development assumes that the target problem is a first-order system whose as-
sociated least-squares functional applied to functions in H1+δ, δ ∈ (0, 1), has quadratic
part that is equivalent to the product H1 norm. Higher-order differential systems can
be recast in the standard way as a first-order system, but care must be taken to ensure
such product ellipticity when it is feasible (cf. [15, 14]). Our particular interest is
in quasilinear first-order systems where the nonlinearity is a product of variables, at
most one of which is a derivative term. For example, if u and v are the variables
in a two-dimensional problem, then we admit terms like u, v, u2ux, and uvvy, but
not uu2

x. (Admitting product derivative terms while retaining H1+δ spaces for the
variables would prevent the use of L2 norms for the equations and inhibit analysis of
the linearized equations.)

Our algorithm applies to the first-order system in three separate stages. The
outermost stage is nested iteration (NI), which starts on the coarsest level where the
discrete nonlinear problem is solved by any appropriate method. The result is then
interpolated to the next finer level where it is used as an initial guess for one Newton
linearization (the middle stage) of the nonlinear problem. A functional is created on
that level using a least-squares principle and the resulting matrix equation is solved
using one, two, or three V-cycles of AMG (the innermost stage). The result is then
interpolated up to the next finer level, with the steps repeated until the finest level is
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processed. Our theoretical results confirm that this direct NI-Newton-FOSLS-AMG
scheme converges in one overall step to an approximation on the finest level that
is accurate to the level of discretization error. Numerical experiments for the EGG
equations described in a companion paper [17] confirm this result.

One advantage that the FOSLS system has over standard minimization techniques
is that the minimum value of the functional is zero at the exact solution of the differ-
ential equation. This property has implications for adaptive refinement that are to be
explored in future work. Another advantage is that FOSLS used with finite element
discretization and Newton linearization of the elliptic equations results in self-adjoint
positive-definite matrix problems that themselves correspond to a well-posed elliptic
system, so the discrete problems can be efficiently solved by multigrid. We demon-
strate this attribute qualitatively in the theory and numerically in the companion
paper.

The idea of using Newton iterations coupled with a multilevel scheme is not new.
In [20], for example, a multilevel nested iteration Newton scheme was applied to dif-
ferential eigenproblems. An abstract theory and numerical results confirmed the need
for only one Newton step on the finest level. In [5], optimal parameters were calcu-
lated for damped approximate Newton to ensure quadratic convergence of a particular
finite element approximation of nonlinear elliptic partial differential equations. This
was later combined with multilevel techniques [6] to obtain a convergence result that
asymptotically required just one Newton linearization per level. This later result is
similar to ours, but does not include the derivative terms in the nonlinearity that are
present in our target application, elliptic grid generation (EGG). The NI approach is
also used in recent work on cascadic multigrid [22], although again their form of the
nonlinearity does not include the more complicated case needed here.

The ”mesh-independence” theory developed for Newton’s method in [21, 4, 3, 2]
addresses the same property of NI that we exploit here. Unfortunately, this theory
cannot easily be applied to our setting because it requires more smoothness of the
infinite-dimensional iterates than ours appear to possess. We are also unable to apply
the mesh-independence-based theory developed in [18, 19] because the nonlinearity
for the Navier-Stokes equations treated there appears only in the lower-order terms.

This paper is organized as follows. Section 2 introduces the equations and func-
tion spaces. In section 3, we describe the NI-Newton-FOSLS method for solving the
nonlinear equations. Section 4 contains theory on convergence of the Newton iter-
ates in H1 and on accuracy estimates for the NI-Newton-FOSLS-AMG scheme. We
conclude with some remarks in the final section.

2. Setup. We use standard notation for the associated spaces. Restricting our-
selves to two dimensions, consider a generic open domain, Ω ∈ R2, with Lipschitz
boundary Γ. Suppose m ≥ 0 and n ≥ 1 are given integers. Let (·, ·)0,Ω denote the
inner product on L2(Ω)n, ‖·‖0,Ω its induced norm, and Hm(Ω)n the standard Sobolev
space with norm ‖ · ‖m,Ω and seminorms | · |i,Ω (0 ≤ i ≤ m). (We suppress superscript
n because dependence of the vector norms on dimension is clear by context.) For
δ ∈ (0, 1), let Hm+δ(Ω) (c.f. [11]) denote the Sobolev space associated with the norm
defined by

‖u‖2
m+δ,Ω ≡ ‖u‖2

m,Ω +
∑

|α|=m

∫
Ω

∫
Ω

|∂αu(x) − ∂αu(y)|2
|x − y|2(1+δ)

dxdy.
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(This definition allows the use of the ”real interpolation” method [1, 11].) Also, let
H

1
2 (Γ) denote the trace Sobolev space associated with the norm

‖u‖ 1
2 ,Γ ≡ inf{‖v‖1,Ω : v ∈ H1(Ω), trace v = u on Γ}.

Finally, let Cm(Ω) denote the space of functions with continuous derivatives in Ω of
up to order m ≥ 0 and define the C0(Ω) norm of f ∈ C0(Ω) by

‖f‖∞,Ω ≡ sup
x∈Ω

|f(x)|.

From Sobolev’s lemma [1], there exists a constant, C, depending only on Ω and δ,
such that

‖f‖∞,Ω ≤ C‖f‖1+δ,Ω, ∀ f ∈ H1+δ(Ω).

The method we develop applies to elliptic quasilinear partial differential equations,
where the highest-order derivative terms appear linearly, with the exception that their
coefficients may include lower-order terms. In fact, we assume that the equations have
been formulated as a p × q first-order system with appropriate boundary conditions.
It is straightforward to rewrite higher-order equations in first-order form, although
care must be taken to ensure that the resulting system is elliptic in the H1 product
norm (assuming that this is even feasible; cf. [15, 14]). This process is exemplified by
the reformulation of the EGG equations in the companion paper [17].

Let the first-order system be represented abstractly by the p-vector equation

p(J) = 0 in Ω,(2.1)

with boundary conditions

BJ = g on Γ,(2.2)

where J is the q-vector of unknowns. (p and q are positive integers, generally with
p ≥ q.) To ensure that we can apply least squares to this system, we must have
p(J) ∈ L2(Ω)p. We want to allow product terms involving a combination of elements
of J, one of which may involve a partial derivative. Therefore, we cannot allow J
to roam freely in H1(Ω)q because such products would not necessarily be in L2(Ω)
and we would thus be prevented from using L2(Ω) norms for the functional. However,
from Sobolev’s Lemma, the C0(Ω) norm is bounded by the H1+δ(Ω) norm in R2 when
δ ∈ (0, 1). Thus, everything in H1+δ(Ω) is continuous and our product terms are in
L2(Ω). We therefore choose the space for J to be H1+δ(Ω)q, ensuring p(J) ∈ L2(Ω)p.
This obviously places restrictions on the allowable boundary functions, g. In fact,
we assume that the solution, J∗, of (2.1)–(2.2) is in H2+δ(Ω)q, which places even
further restrictions on g. In addition, the coercivity requirement on the first Fréchet
derivative of our system influences the allowable spaces for both the boundary and
boundary conditions, which in turn influences the solution space for J∗. This issue
is addressed implicitly in the abstract theory of section 4 and in detail for the EGG
application in the companion paper [17].

In other FOSLS applications [13, 15, 7, 8, 14], both H−1 and L2 norms are
used for the domain and H

1
2 norms for the boundary. With appropriate smoothness

[15], FOSLS functionals for general second-order elliptic partial differential equations
exhibit H1 equivalence for the functionals based on L2 norms for the domain and H

1
2
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norms for the boundary. In practice, while L2 norms are used for the domain, it is
common either to use L2 norms scaled by 1

h for the boundary norms or to impose the
boundary conditions. We focus on imposing boundary conditions here for simplicity,
although some of our numerical results in [17] take the scaled L2 norm approach for
illustration.

It is more convenient in the analysis to consider homogeneous boundary condi-
tions. To this end, we extend g smoothly into Ω: assume that we are given a q-vector
function, E, defined on Ω that satisfies

BE = g, on Γ.

Now, writing J = D + E and P(D) = p(D + E), our target problem becomes

P(D) = 0, in Ω,(2.3)

with homogeneous boundary conditions

BD = 0, on Γ.(2.4)

Generally, E needs to be as smooth as we require J∗ = D∗ + E to be, but this
requirement is implicit in the following assumptions we make on (2.3)–(2.4).

We start by defining the space on which this system is posed. For any ν > 0,
define

Hν = {D ∈ Hν(Ω)q : BD = 0 on Γ}.(2.5)

We assume that our solution, D∗, resides in H2+δ and we look for it in H1+δ. Note
that D ∈ H1+δ implies P(D) ∈ L2(Ω)p.

3. Method. There are several decisions to be made about how (2.3) is solved.
Our basic choice is to use Newton’s method and FOSLS to obtain a quadratic min-
imization problem, finite elements for the discretization, and then AMG with NI to
solve the resulting matrix equations. Within this basic framework, we need to choose
how Newton’s method and FOSLS are related. A FOSLS-Newton method would
involve forming the least-squares functional, setting its gradient to zero, and then
solving this nonlinear problem with Newton’s method. A Newton-FOSLS method
would involve linearizing the equations first, and then forming the least-squares func-
tional and setting its gradient to zero. The gradient equations that result from these
two approaches differ only by a term coming from the second Fréchet derivative of the
system operator that, near the solution, is dominated by the other operator terms.
Because nested iteration guarantees proximity to the solution on each level, the per-
formance of these two approaches tends to be much the same. We therefore focus on
the Newton-FOSLS approach because of its theoretical and numerical simplicity.

Our method involves first applying Newton’s method to nonlinear system (2.3) on
the coarsest finite element level. We then form an L2 functional from the linearized
equations and minimize a coarsest-level discretization of it by AMG (or perhaps a
direct matrix solver). The resulting approximate Newton iterate computed at the
coarsest-level scale is then used on the next finer level as an initial guess for an anal-
ogous discrete Newton step there: system (2.3) is linearized about this initial guess,
an L2 minimization principle is applied, and then AMG is used to approximate the
minimizer on this finer scale. This process continues, with the iterates approximated
on successively finer levels, until a desired accuracy is reached.
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Applying Newton’s method to system (2.3) gives us the following linearized prob-
lem: given Dn ∈ H1+δ, find Dn+1 ∈ H1+δ such that

P′(Dn)[Dn+1 − Dn] = −P(Dn),(3.1)

where P′(Dn)[Dn+1 −Dn] denotes the first Fréchet derivative of P(Dn) with respect
to Dn in direction Dn+1 − Dn.

To solve (3.1) for Dn+1, consider the least-squares functional

G0(Dn+1) ≡ ‖P′(Dn)[Dn+1 − Dn] + P(Dn)‖2
0,Ω

= (P′(Dn)[Dn+1 − Dn] + P(Dn), P′(Dn)[Dn+1 − Dn] + P(Dn)) .

Note that G0 depends on Dn and E. To minimize G0, we set to zero its first Fréchet
derivative, taken with respect to Dn+1 (cancelling the factor 2 for convenience): given
Dn ∈ H1+δ, find Dn+1 ∈ H1+δ such that

(P′(Dn)[K], P′(Dn)[Dn+1 − Dn] + P(Dn)) = 0, ∀ K ∈ H1+δ.(3.2)

We illustrate this infinite-dimensional Newton process in figure 3.1, where N→ indicates
one Newton step.

D0
N→ D1

N→ D2
N→ D3

N→ D4 · · · Dn
N→ Dn+1

N→ · · · D∗

Fig. 3.1. The Newton-FOSLS infinite-dimensional algorithm

In practice, we need to discretize (3.2) on some given finite element space, Hh.
But we then need an approximation for Dn. The main point to keep in mind in
this approximation is that early iterates are relatively crude approximations to D∗,
so they can be approximated on relatively coarse grids. In general, if final iterate
Dn+1 is approximated by a best approximation, Un+1, in Hhn , then Dn need only
be approximated on a grid with mesh size O(hn

1
2 ). This is a natural consequence of

quadratic convergence and this premise is served well by a coarse grid of mesh size
2h. This view gives rise to our nested iteration approach that supplies the initial
guess for one Newton iterate on grid h by first iterating on grid 2h. In particular,
consider a nested sequence of m + 1 finite-dimensional subspaces of H1+δ denoted
by Hh0 ⊂ Hh1 ⊂ . . . ⊂ Hhm ⊂ H1+δ, where hn = 2−nh0, 0 ≤ n ≤ m. Note that
piecewise bilinears on rectangles are in H1+δ(Ω) for δ ∈ [0, 1

2 ) [16]. Let U0 denote
the initial guess in Hh0 . For n = 0, 1, . . . , m in turn, define the grid Hhn problem as
follows: given Un ∈ Hhn , find Un+1 ∈ Hhn ⊂ Hhn+1 such that(

P′(Un)[Khn ], P′(Un)[Un+1 − Un] + P(Un)
)

= 0, ∀ Khn ∈ Hhn .(3.3)

3.1. NI-Newton-FOSLS. The discretization in (3.3) amounts to approximat-
ing the finest-level solution, U∗

m, by a nested iteration on subspaces Hhn , n =
0, 1, · · ·m. This NI approach involves first solving problem (3.3) on the coarsest
subspace, Hh0 . In practice, we can use any sensible solution process here because
this space is presumably of very low dimension. We can simply iterate with a (possi-
bly damped) discrete Newton iteration until the error in the approximation is below
discretization error. However, because our theory assumes we are sufficiently close to
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D∗, we have assumed, for convenience, that this coarsest approximation is computed
by only one discrete Newton iteration applied to a sufficiently close approximation,
U0 ∈ Hh0 . Now, the resulting iterate, U1, is then interpolated to the next finer
level where it is used as an initial guess for one discrete Newton step. The resulting
approximation, U2, on subspace Hh1 is then used as an initial guess for the next finer
level. In general, the initial guess for Newton on level hn comes from the final Newton
step on level hn−1: Un. The process is repeated until the finest subspace is reached,
where one final Newton step is then applied. Note that Un+1 can be interpreted as a
discrete approximation to the result, D̃n+1, of one infinite-dimensional Newton step
applied to Un. This NI procedure is illustrated in figure 3.2, where Nhn→ indicates one

Newton step on Hhn and
N

↘ indicates one infinite-dimensional Newton step applied
to discrete initial guess Un.

U0
Nh0→ U1

Nh1→ U2
Nh2→ U3

Nh3→ U4 · · ·
N

↘
N

↘
N

↘
N

↘ . . .

D̃1 D̃2 D̃3 D̃4 · · ·

Fig. 3.2. The NI-Newton-FOSLS algorithm

One of our main objectives in this paper is to prove that this nested iteration
process, involving only one discrete Newton step on each level, produces a result on
the finest level that is within discretization error of the infinite-dimensional solution.

3.2. AMG. Our theory assumes a standard V-cycle multigrid algorithm because
of its superior theoretical basis. However, because of its enhanced robustness, we use
AMG in practice as the matrix solver for approximating Un+1. See [12] for basic
descriptions of multigrid and AMG.

AMG starts on the coarsest level with initial guess V0 = U0. We apply ν0 cycles
of AMG to the matrix problem arising from (3.3) with n = 0. The result, V1, becomes
the initial guess for level h1, where the process continues. In general, the initial guess
for AMG on level hn comes from the final AMG approximation on level hn−1: Vn. In
figure 3.3, we illustrate the NI-Newton-FOSLS-AMG algorithm, with Mhn→ denoting

one approximate Multigrid-Newton step on Hhn and
Nhn

↘ denoting the exact discrete
Newton step with initial guess Vn (with result Ũn+1).

V0
Mh0→ V1

Mh1→ V2
Mh2→ V3

Mh3→ V4 · · ·
Nh0

↘
Nh1

↘
Nh2

↘
Nh3

↘ . . .

Ũ1 Ũ2 Ũ3 Ũ4 · · ·

Fig. 3.3. The NI-Newton-FOSLS-AMG algorithm

4. Abstract Theory. Bounds on various quantities used in the theory devel-
oped here involve many different constants. To avoid proliferation, we use upper case
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C to denote a generic constant that, unless otherwise specified, can change meaning
with each occurrence. When it is important to track the origin of these constants, we
instead use lower case c with unique subscripts. In every occurrence, these constants
are independent of h and n, but they may depend on the value of the H1+δ(Ω)q norm
of the approximation. (Here, and in what follows, δ ∈ (0, 1) is a fixed constant.) To
make sure that these values are properly bounded, we start with an initial guess in
a small H1+δ(Ω)q ball about D∗. We show that the approximations remain in this
ball and, in fact, attain order h accuracy in the H1(Ω)q norm. This also controls the
values of the H1+δ(Ω)q norm (see Lemma 4.5 below).

Assume that there exists a solution, D∗, of (2.3) in H2+δ. (Recall that Hν is
defined in (2.5) for any ν > 0.) Denote the open H1+δ(Ω)q ball centered at D∗ of
radius r > 0 by Br ≡ {D ∈ H1+δ : ‖D∗ − D‖1+δ,Ω < r}. Several of our norm
assumptions and estimates involve both integer and fractional norms. So that our
statements apply to both cases, we let ε = 0 or δ. Assume now that P[D] ∈ Hε(Ω)p

for every D ∈ Br: there exists a constant, C, depending only on D∗, E, r, Ω, and δ,
such that

‖P(D)‖ε,Ω ≤ C, ∀ D ∈ Br.

Further assume uniform coercivity and continuity of P′(D)[ · ] as a mapping from
H1+ε(Ω) to Hε(Ω)p: for every D ∈ Br, there exists constants cc and cb, depending
only on D∗,E, r,Ω, and δ, such that

1
cc
‖K‖1+ε,Ω ≤ ‖P′(D)[K]‖ε,Ω ≤ cb‖K‖1+ε,Ω, ∀ K ∈ H1+ε(Ω).(4.1)

Note that coercivity implies that P′(D)[ · ] is one-to-one on H1+ε(Ω) for every D ∈ Br,
including of course D = D∗. We also assume boundedness of the second Fréchet
derivative of P(D) for all D ∈ Br: for every D ∈ Br, there exists a constant, c2,
depending only on D∗, E, r, Ω, and δ, such that

‖P′′(D)[K,K]‖ε,Ω ≤ c2‖K‖1+δ,Ω‖K‖1+ε,Ω, ∀ K ∈ H1+ε(Ω).(4.2)

Here, P′′(D)[K,K] denotes the second Fréchet derivative of P(Dn) with respect to
Dn in directions K and K.

Let Ph and Qh denote the respective H1+δ and H1 projections of H1+δ onto Hh.
Note that

‖PhD‖1+δ,Ω ≤ ‖D‖1+δ,Ω, ∀ D ∈ H1+δ,

and

‖QhD‖1,Ω ≤ ‖D‖1,Ω, ∀ D ∈ H1+δ.(4.3)

Assume that our finite element spaces satisfy the usual approximation properties (cf.
[9]):

‖D∗ − PhD∗‖γ,Ω ≤ cdh
2+δ−γ‖D∗‖2+δ,Ω, ∀ γ ∈ [0, 1 + δ],(4.4)

and

‖D∗ − QhD∗‖1,Ω ≤ cdh
1+δ‖D∗‖2+δ,Ω.(4.5)
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Assume that they also satisfy the inverse estimate (cf. [9, 11]):

‖U‖β,Ω ≤ ci

hβ−γ
‖U‖γ,Ω, ∀ U ∈ Hh, β ∈ [0, 1 + δ], γ ∈ [0, β].(4.6)

Assume finally that h0 is so small that Br ∩ Hh0 �= φ and that initial guess U0 is in
Br ∩ Hh0 .

The following theory shows that Un is in an H1(Ω) ball about D∗ of radius
(1 + η)cdhn, where η is any predetermined positive constant and cd is the constant in
(4.4) and (4.5). For simplicity, we choose η = 1 and thus define

Sn = {U ∈ Hhn : ‖D∗ − U‖1,Ω ≤ 2cdhn}(4.7)

and

S = ∪m
n=0Sn.

Lemma 4.5 shows that S is bounded in H1+δ(Ω)q and, hence, compact in H1(Ω)q.
We first state our three central theorems. Their proofs follow from a series of

results developed in the next subsection.
For all three theorems, we assume that r > 0 is sufficiently small. For theorem 2,

with r fixed, we assume further that h0 > 0 is sufficiently small, especially so that
S0 ⊂ Br. For theorem 3, with r fixed, we assume that h0 > 0 is possibly smaller
still. We do this so that, in addition to S0 ⊂ Br, we are sure that the exact discrete
iterate, Un+1, is even closer to D∗ than 2cdhn, which in turn allows us to deduce
that the multigrid approximation, Vn+1, is within 2cdhn of D∗ . Finally, theorem 3
also assumes that, on each level, the discrete Newton problem is approximately solved
with a sufficient but fixed number, ν0, of multigrid V-cycles.

Theorem 4.1 (Newton). With Dn ∈ Br given, let Dn+1 be the exact infinite-
dimensional Newton step defined by (3.2). Then Dn+1 ∈ Br and there exists a con-
stant, cq, depending only on D∗, E, Ω, and δ, such that

‖D∗ − Dn+1‖1+ε,Ω ≤ cq‖D∗ − Dn‖1+ε,Ω‖D∗ − Dn‖1+δ,Ω, ε = 0, δ.(4.8)

Theorem 4.2 (discrete Newton). Assume that U0 ∈ S0. Then Un+1 ∈ Sn+1:
the Newton approximation on level hn based on initial guess Un satisfies the error
bound

‖D∗ − Un+1‖1,Ω ≤ 2cdhn+1 = cdhn.(4.9)

Theorem 4.3 (inexact discrete Newton). Assume that V0 ∈ S0. Then Vn+1 ∈
Sn+1: the multigrid approximation on level hn based on initial guess Vn satisfies the
error bound

‖D∗ − Vn+1‖1,Ω ≤ 2cdhn.(4.10)

4.1. Preliminaries. Although pose problem (2.3) on H1+δ ⊂ H1+δ(Ω)q, we
prove convergence in the weaker H1(Ω)q norm. Since H1+δ is not complete in the
H1(Ω)q norm, we cannot appeal to standard Newton convergence theory. Fortunately,
the result we need (theorem 4.1) is weaker.
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Lemma 4.4. Let D ∈ Br and D̃ = θD + (1 − θ)D∗, with θ ∈ [0, 1]. Then

‖D̃‖1+δ,Ω ≤ r + ‖D∗‖1+δ,Ω.

Proof. The result follows directly from the triangle inequality and is thus omitted.

Lemma 4.5. Suppose that Un ∈ Sn. Then

‖D∗ − Un‖1+δ,Ω ≤ cδh
1−δ
n ,(4.11)

where cδ = 2cicd + (1 + ci)cdh
δ
0‖D∗‖2+δ,Ω. Thus, S = ∪m

n=0Sn ⊂ Br provided h0 is so
small that cδh

1−δ
0 ≤ r.

Proof. The bound follows the triangle inequality, (4.6), the triangle inequality
again, (4.4), the definition of Sn in (4.7), and (4.4) again:

‖D∗ − Un‖1+δ,Ω ≤ ‖D∗ − PhnD∗‖1+δ,Ω + ‖PhnD∗ − Un‖1+δ,Ω

≤ cdhn‖D∗‖2+δ,Ω +
ci

hn
δ
‖PhnD∗ − Un‖1,Ω

≤ cdhn‖D∗‖2+δ,Ω +
ci

hn
δ

[
‖D∗ − PhnD∗‖1,Ω + ‖D∗ − Un‖1,Ω

]
≤ cdhn‖D∗‖2+δ,Ω +

ci

hn
δ

[
cdhn

1+δ‖D∗‖2+δ,Ω + 2cdhn

]
≤ cδhn

1−δ.

This lemma confirms max norm O(h1−δ) convergence.
Lemma 4.6. Suppose that Vn ∈ Sn for sufficiently small r. Let Ũn+1 denote one

exact discrete Newton step with initial guess Vn and let Vn+1 denote its multigrid
approximation. Then

‖Ũn+1 − Vn+1‖1,Ω ≤ ρν0‖Ũn+1 − Vn‖1,Ω.(4.12)

Here, ρ ∈ [0, 1) is a bound on the multigrid convergence factor for any level n and
any initial guess V ∈ Sn; it depends only on D∗,E, r,Ω, δ, cd, and ci.

Proof. Convergence estimate (4.12) follows from standard multigrid theory (cf.
[10]) using the H1(Ω)q equivalence result in (4.1) with D = Vn.

We have now established the tools that allow us to prove our central theorems.

4.2. Proofs of theorems 4.1, 4.2, and 4.3 . Proof of theorem 4.1. Consider
a Taylor expansion for P(D∗) about Dn:

0 = P(D∗) = P(Dn) + P′(Dn)[D∗ − Dn] +
1
2
P′′(D̃)[D∗ − Dn,D∗ − Dn],

where D̃ = θDn + (1 − θ)D∗ for some θ ∈ [0, 1] is bounded in the H1+δ(Ω)q norm
(lemma 4.4). Then the lower bound in (4.1), combining the above expansion with
(3.1), and using (4.2) proves (4.8):

‖D∗ − Dn+1‖1+ε,Ω ≤ cc‖P′(Dn)[D∗ − Dn+1]‖ε,Ω

=
cc

2
‖P′′(D̃)[D∗ − Dn,D∗ − Dn]‖ε,Ω

≤ ccc2

2
‖D∗ − Dn‖1+δ,Ω‖D∗ − Dn‖1+ε,Ω.(4.13)
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To show that Dn+1 ∈ Br, consider (4.13) with ε = δ. For Dn ∈ Br, this reduces
to

‖D∗ − Dn+1‖1+δ,Ω ≤ ccc2

2
r2,

and we just require

r ≤ 2
ccc2

.(4.14)

Proof of theorem 4.2. First assume that r is so small that (4.14) is satisfied.
Assume also that h0 is so small that

cδh
1−δ
0 = 2cicdh

1−δ
0 + (1 + ci)cd‖D∗‖2+δ,Ωh0 ≤ r.

Hence, by lemma 4.5 and because we assume that U0 ∈ S0, we must have U0 ∈ Br.
Suppose now that we could show that Un ∈ Sn implies that Un+1 ∈ Sn+1 for all
n ≥ 0. Then, since U0 ∈ S0, we would know that U1 ∈ S1, which in turn would imply
that U2 ∈ S2. Continuing in this way would show that (4.9) holds for all n ≥ 0.

To this end, assume that (4.9) holds for n replaced by n − 1, with Un ∈ Sn:

‖D∗ − Un‖1,Ω ≤ 2cdhn,(4.15)

From lemma 4.5, we see that

‖D∗ − Un‖1+δ,Ω ≤ cδh
1−δ
n .(4.16)

We bound the left side of (4.9) by first using the triangle inequality:

‖D∗ − Un+1‖1,Ω ≤ ‖D∗ − D̃n+1‖1,Ω + ‖D̃n+1 − Un+1‖1,Ω,(4.17)

where D̃n+1 is the result of infinite-dimensional Newton step (3.2) based on initial
guess Un.

Consider the first term on the right of (4.17). By theorem 4.1 with ε = 0, (4.11),
and (4.15), we have that

‖D∗ − D̃n+1‖1,Ω ≤ cq‖D∗ − Un‖1,Ω‖D∗ − Un‖1+δ,Ω

≤ 2cdcqcδh
2−δ
n .(4.18)

For the second term on the right of (4.17), we now show that

‖D̃n+1 − Un+1‖1,Ω ≤ cbcc(4cdcqcδh
1−δ
0 + cdh

δ
0‖D∗‖2+δ,Ω)hn.(4.19)

To this end, let f ≡ P′(Un)[Un]−P(Un). Then discrete Newton step (3.3) becomes:
given Un ∈ Hhn , find Un+1 ∈ Hhn such that(

P′(Un)[Khn ], P′(Un)[Un+1]
)

=
(
P′(Un)[Khn ], f

)
, ∀ Khn ∈ Hhn .(4.20)

Note that D̃n+1 ∈ H1+δ, which is generally not in Hhn , is defined by(
P′(Un)[K], P′(Un)[D̃n+1]

)
= (P′(Un)[K] , f) , ∀ K ∈ H1+δ.(4.21)
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Combining (4.20) and (4.21) for K = Khn ∈ Hhn , we have that(
P′(Un)[Khn ], P′(Un)[D̃n+1 − Un+1]

)
= 0

from which follows (
P′(Un)[K], P′(Un)[D̃n+1 − Un+1]

)
=

(
P′(Un)[K − Khn ], P′(Un)[D̃n+1 − Un+1]

)
.

Letting K = D̃n+1 − Un+1 and Khn = Qhn(D̃n+1 − Un+1) = QhnD̃n+1 − Un+1, so
that K − Khn = D̃n+1 − QhnD̃n+1, then yields(

P′(Un)[D̃n+1 − Un+1], P′(Un)[D̃n+1 − Un+1]
)

=
(
P′(Un)[D̃n+1 − QhnD̃n+1], P′(Un)[D̃n+1 − Un+1]

)
.(4.22)

Applying the Cauchy-Schwarz inequality to the right side of (4.22), then cancelling
the term ‖P′(Un)[D̃n+1 − Un+1]‖0,Ω that results on both sides, yields

‖P′(Un)[D̃n+1 − Un+1]‖0,Ω ≤ ‖P′(Un)[D̃n+1 − QhnD̃n+1]‖0,Ω.

But (4.1) confirms that P′(Un)[M] is coercive and bounded in the H1(Ω)q norm for
M ∈ H1+δ, so the above bound becomes

‖D̃n+1 − Un+1‖1,Ω ≤ cbcc‖D̃n+1 − QhnD̃n+1‖1,Ω.(4.23)

We now bound the right side of (4.23) using the triangle inequality, (4.3), (4.5), (4.18),
and relation hn ≤ h0:

‖D̃n+1 − QhnD̃n+1‖1,Ω ≤ ‖D̃n+1 − D∗‖1,Ω + ‖D∗ − QhnD∗‖1,Ω

+‖Qhn(D∗ − D̃n+1)‖1,Ω

≤ 2‖D̃n+1 − D∗‖1,Ω + cdh
1+δ
n ‖D∗‖2+δ,Ω

≤ (4cdcqcδh
1−δ
0 + cdh

δ
0‖D∗‖2+δ,Ω)hn.(4.24)

Bound (4.19) now follows from bounds (4.23) and (4.24).
Combining (4.17), (4.18), (4.19), and relation hn ≤ h0 yields

‖D∗ − Un+1‖1,Ω ≤ (2(1 + 2cbcc)cqcδh
1−δ
0 + cbcc‖D∗‖2+δ,Ωhδ

0)(cdhn).

Theorem 4.2 now follows by choosing h0 perhaps smaller still so that

2(1 + 2cbcc)cqcδh
1−δ
0 + cbcc‖D∗‖2+δ,Ωhδ

0 ≤ 1.

Proof of theorem 4.3 As in theorem 4.2, we need h0 sufficiently small, but even
smaller yet to account for the fact that we do not solve the Newton steps exactly: we
need h0 so small that the error in approximating Ũn+1 (the exact discrete Newton
step) by Vn+1 keeps these iterates in Sn+1.
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From theorem 4.2, we have that if Un ∈ Sn, then Un+1 ∈ Sn+1. This result can
be tightened by choosing a smaller value for h0: choosing h0 such that, say,

2(1 + 2cbcc)cqcδh
1−δ
0 + cbcc‖D∗‖2+δ,Ωhδ

0 ≤ 2
3
,

means that Un ∈ Sn implies that

‖D∗ − Un+1‖1,Ω ≤ 4
3
cdhn+1 =

2
3
cdhn.(4.25)

As for theorem 4.2, to prove that (4.10) holds for n, we may assume that it holds
for n replaced by n − 1:

‖D∗ − Vn‖1,Ω ≤ 2cdhn.(4.26)

Letting Ũn+1 as before denote one exact discrete Newton step with initial guess Vn,
then

‖D∗ − Vn+1‖1,Ω ≤ ‖D∗ − Ũn+1‖1,Ω + ‖Ũn+1 − Vn+1‖1,Ω.(4.27)

For sufficiently small h0, we know that Vn is in Sn ⊂ Br and, with the reduced value
of h0, the first term on the right is bounded according to (4.25):

‖D∗ − Ũn+1‖1,Ω ≤ 2
3
cdhn.(4.28)

For the second term, we use (4.12), the triangle inequality, (4.28), and (4.26):

‖Un+1 − Vn+1‖1,Ω ≤ ρν0‖Ũn+1 − Vn‖1,Ω

≤ ρν0

[
‖Ũn+1 − D∗‖1,Ω + ‖D∗ − Vn‖1,Ω

]
≤ ρν0

[
2
3
cdhn + 2cdhn

]

=
8
3
cdρ

ν0hn

≤ 1
3
cdhn,(4.29)

where ν0 is chosen so large that ρν0 ≤ 1
8 . Combining bounds (4.27), (4.28), and (4.29)

then yields

‖D∗ − Vn+1‖1,Ω ≤ cdhn,

which proves Theorem 4.3.

5. Conclusion. The general theory developed here applies to virtually any set of
quasilinear partial differential equations that can be reformulated as a first-order sys-
tem, provided it is amenable to an H1-elliptic least-squares principle. The approach
uses nested iteration based on one Newton step per level implemented using a fixed
number of multigrid V-cycles. The theory shows that, for a sufficiently fine coarsest
grid, the method produces a final approximation to the solution of the first-order sys-
tem that is H1 accurate to the level of discretization error. Use of this general theory
is illustrated in the companion paper [17] by applying it to a first-order system for the
elliptic grid generation equations. The companion paper also reports on numerical
experiments that support the theory.
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