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Abstract. There are many applications of the least-squares finite element method for the
numerical solution of partial differential equations because of a number of benefits that the least-
squares method has. However, one of most well-known drawbacks of the least-squares finite element
method is the lack of exact discrete mass conservation, in some contexts, due to the fact that least-
squares method minimizes the continuity equation in L2 norm. In this paper, we explore the reason
of the mass loss and provide new approaches to retain the mass even in severely under-resolved grid.
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1. Introduction. The finite element method based on first-order system least-
squares (FOSLS) formulation has been used in a wide variety of applications [3], [4],
[5], [6], [11]. We are interested, here, in least-squares finite element methods for
Stokes and Navier-Stokes equations. The advantages of FOSLS formulation include:
many properties of the continuous space are naturally inherited by the discrete finite-
dimensional subspace; weak formulations associated with the minimization problems
are, in general, coercive; the resulting algebraic problems are symmetric and positive
definite; the FOSLS functional provides an excellent local a posteriori error measure;
and the choice of discretization spaces is not restricted [1], [2], [3], [4], [7], [12]. On the
other hand, least-squares methods for Stokes and Navier-Stokes equations lack an ex-
act sense of discrete mass conservation. More precisely, least-squares methods do not
naturally constrain the velocities to exactly satisfy any form of the mass conservation
equations on discrete volumes as Galerkin and finite volume methods typically do. In-
stead, these methods merely strike a balance between the L2 errors in each equation,
with no special attention to the one that expresses mass conservation. Conservation
error generally tends to vanish as the resolution or approximation order increases,
but some applications require a level of discrete conservation that substantially ex-
ceeds the overall accuracy obtained by the discretization. In particular, for problems
in which the domain is long and thin and only velocity boundary conditions are pre-
scribed on all but a relatively small portion of the boundary, the use of low-order finite
element spaces with a relatively coarse grid without further mitigation can result in
severe mass loss. This deficiency can be overcome in two-dimensional problems by
using higher-order finite element spaces, as the results in [15] show. However, in three
dimensions, further measures may be necessary, which is the focus of this paper.

In [9], mass conservation was improved by introducing newly defined variables
and corresponding boundary conditions. Here, we instead suggest more fundamental
ways of achieving improved mass conservation. We first identify a cause of the loss
of mass in the least-squares finite element method in three-dimensional problems. In
section 3, we show that boundary conditions near edges parallel to the flow contribute
to mass-loss, even when high-order finite elements are employed. In section 3.1, a
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modification of the way in which boundary conditions are applied is proposed that
greatly enhances mass conservation. In section 3.2, a weighted boundary functional
is employed near these edges that yields a similar restoration of mass conservation.

Another technique, described in section 3.3, involves the use of both first-order
system least-squares (FOSLS) [7] and first-order system LL* (FOSLL*) [8] methods.
FOSLS is an approach that rewrites the original equations as a first-order system to
which a least-squares minimization principle is applied. The usual aim of FOSLS is to
produce a functional that is equivalent to the square of a product H1 norm. FOSLL*
also rewrites the original equations as a first-order system, but then formulates an H1-
equivalent minimization principle (in the linear case) by introducing the dual variables
via the adjoint of the associated first-order operator. In this paper, we combine these
two methods. First, we solve a linear system with FOSLS and add a correction from
FOSLL* to get an enhanced approximation. FOSLS provides an approximation in
a current least-squares finite dimensional space and FOSLL* provides a correction
from a different finite dimensional space to recover the mass loss (see the details in
subsection 3.3). This framework fits well for nonlinear systems because solving for a
correction with FOSLL* is no more costly than one linearization step in a Newton
iteration. To our knowledge, this is the first attempt to combine FOSLS and FOSLL*
in this way. This paper focuses on improving the approximation in terms of mass
conservation for Stokes and Navier-Stokes using FOSLS/FOSLL* approach.

Our model problem is introduced in section 2. In section 3, several approaches
for improving mass conserving least-squares methods are developed. We then apply
these approaches to the Navier-Stokes equations in section 4.

2. Model problem. Consider the steady state Navier-Stokes equations:

−Reu · ∇u −∇p + ∆u = 0 in Ω,
∇ · u = 0 in Ω,

u = g on ∂Ω,
(2.1)

where Re is the Reynolds number and p is the pressure normalized by viscosity. The
situation that seems to produce the most dramatic loss of mass is a long thin domain
with velocity boundary conditions, and so we focus on these. Throughout this paper,
the vector valued variables are in boldface characters and the scalar valued variables
are in roman characters, respectively.

We recast (2.1) as two well-known equivalent first-order systems, called velocity/velocity-
gradient/pressure and velocity/vorticity/pressure formulations [4]. By introducing a
new dependent variable, U = ∇u, the equivalent first-order velocity/velocity-gradient/pressure
formulation is given by

U −∇u = 0 in Ω,
∇ · u = 0 in Ω,

−Reu · U −∇p + ∇ ·U = 0 in Ω,
∇× U = 0 in Ω,
∇(trU) = 0 in Ω,

u = g on ∂Ω,
n× U = G on ∂Ω,

(2.2)

where trU represents the trace of U. The boundary condition, u = g, yields the
condition n × U = G. In system (2.2), the fourth and fifth equations are auxiliary
equations induced from the first and the second equations, respectively. System (2.2)
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is overdetermined, but consistent (see [1] for details). For all the numerical tests in
this paper, we enforce the constraint trU = 0 by eliminating one of the dependent
variables, that is, by setting U33 = −(U11 + U22).

Using the vorticity field, w = ∇ × u, we obtain the velocity/vorticity/pressure
formulation:

∇× u + ∇α − w = 0 in Ω,
∇ · u = 0 in Ω,

−Reu× w + ∇P + ∇× w = 0 in Ω,
∇ ·w = 0 in Ω,

u = g on ∂Ω,
α = 0 on ∂Ω,

n ·w = g on ∂Ω,

(2.3)

where α is a slack variable and P = (Re/2)|u|2 + p denotes total pressure. The
boundary condition, u = g, yields the condition n · w = g.

From now on, we use velocity-gradient and vorticity for short to mean velocity/velocity-
gradient/pressure and velocity/vorticity/pressure, respectively.

FOSLS rewrites these systems as minimization principles for the following respec-
tive velocity-gradient and vorticity functionals:

F (u,U, p : 0) = ‖U −∇u‖2 + ‖∇ · u‖2

+ ‖ − Reu · U −∇p + ∇ ·U‖2 + ‖∇× U‖2 + ‖∇(trU)‖2 (2.4)

and

G(u, α,w, P : 0) = ‖∇× u + ∇α − w‖2 + ‖∇ · u‖2

+ ‖ − Reu× w + ∇P + ∇× w‖2 + ‖∇ · w‖2, (2.5)

where ‖ · ‖ denotes the L2-norm over domain Ω.

3. Mass conservation in Stokes equations. To simplify the discussion, we
first consider Stokes equations, defined by Re = 0. The first test problem we examine
is a long square tube with dimension 1 × 1 × 10. We call the boundaries the inlet
and outlet where z = 0 and z = 10, respectively, and walls otherwise. Along the
walls, a no-slip boundary condition (u = 0) is imposed. On then inlet and outlet, the
boundary conditions are

n × u = 0 and n · u = x(1 − x)y(1 − y), (3.1)

where n is the outward unit normal vector. On inlet and outlet, the flow profile is the
parabola x(1−x)y(1−y). The exact solution of this model problem does not maintain
a parabolic profile in z cross-sections down the tube but, away from inlet/outlet, it
does tend toward what is known as a developed steady flow that is independent of z.
This is achieved with a profile, u(x, y), satisfying ∆u(x, y) = C along the z-direction
and the pressure, p(x, y, z), satisfying ∇p = (0, 0, C)t. Here, C is chosen so that
∫ 1

0

∫ 1

0 u(x, y)dxdy = 1
36 =

∫ 1

0

∫ 1

0 x(1 − x)y(1 − y)dxdy, the cross-sectional flux.

In (2.2) and (2.3), letting Re = 0 implies P = p and we then obtain the first-order
systems of Stokes equations. The boundary conditions in (2.2) and (2.3) are valid for
Stokes problem as well.
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u=(0, 0, x(1 − x)y(1 − y)) u=(0, 0, x(1 − x)y(1 − y))

u=0

Fig. 3.1. Domain

The FOSLS velocity-gradient formulation uses the functional

FS(u,U, p) = ‖U−∇u‖2 + ‖∇ · u‖2

+ ‖∇ · U −∇p‖2 + ‖∇× U‖2 + ‖∇(trU)‖2 (3.2)

and the FOSLS vorticity formulation uses

GS(u, α,w, p) = ‖∇×u +∇α −w‖2 + ‖∇ · u‖2 + ‖∇×w +∇p‖2 + ‖∇ ·w‖2. (3.3)

Under general H2-regularity conditions, FS(u,U, p), with consistent boundary con-
ditions on u and n × U, is equivalent to the squared H1-norm, ‖u‖2

1 + ‖U‖2
1 + ‖p‖2

1

[7]. Although (2.3) is perhaps the most widely used least-squares from of Stokes and
Navier-Stokes equations [4], H1-equivalence generally does not hold for GS(u, α,w, p)
with boundary conditions on u and n · w [2].

The software package FOSPACK [16] was used to construct the discrete systems
and solve them by a conjugate gradient iteration preconditioned by algebraic multi-
grid (AMG) using W(1,1)-cycles. Table 3.1 shows the amount of mass loss in the
approximate solution in the middle of the domain (z = 5), where the biggest loss oc-
curs. Since we prescribe the outlet boundary conditions as inlet boundary conditions,
mass loss is symmetric with respect to z = 5. Throughout this paper, the mass loss
reported in the tables is the relative loss at z = z0, where the biggest mass loss occurs,
compared to the inlet flow rate:

(

∫

Γin

n · u ds −
∫

Γz0

n · u ds

)

/

∫

Γin

n · u ds,

where Γin is the inlet surface and
∫

Γz0

n ·u ds is the net flow across the plane z = z0.

The total flow rate into the domain is 1/36 ≈ 2.778× 10−2. For the velocity-gradient
formulation of the standard least-squares method, the flow rates in the middle of the
domain (z = 5) are

h = 1/8, Linear : 8.099 × 10−6 (99.9% mass loss)

−→
{

h = 1/16, Linear : 7.730 × 10−4 (97.2% mass loss)
h = 1/8, Quadratic : 6.617 × 10−3 (76.2% mass loss).

(3.4)

As briefly mentioned in the introduction, using higher-order elements largely alleviates
the mass loss in two dimension ([15]). In three dimensional space, increasing the
order of elements is not as effective as in two dimension, but still provides better mass
conservation than decreasing mesh size, as shown in (3.4). Thus, in this paper, we
focus on using higher order elements. Also, we have changed mesh size, h, so that
the same number of degrees of freedom are used for each type of finite element space,
while we increase the order of the elements. However, the cost of solution is higher
with higher-order elements because the matrices in the corresponding discrete system
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Velocity-Gradient
Linear (h = 1/16) Quadratic (h = 1/8) Quartic (h = 1/4)

mass loss 97.2% 76.2% 47%
functional value 1.109 × 10−2 4.577 × 10−3 2.284 × 10−3

Vorticity
mass loss 99.96% 99.1% 92.5%

functional value 3.366 × 10−3 1.275 × 10−3 7.708 × 10−4

Table 3.1

Mass loss and Functonal value: Square tube, Standard boundary normal vector

are more dense. In the vorticity formulation, the loss of mass is more severe. The
functional value in the table below gives the values of FS and GS .

Since the velocity that is fully specified over all boundaries satisfies the global
mass conservation constraint, only local mass conservation is violated. To explain
one source of loss of mass, consider the boundary conditions on the velocity-gradient,

U = ∇u = (∇u1 ∇u2 ∇u3) = (U1 U2 U3) =





U11 U21 U31

U12 U22 U32

U13 U23 U33



 .

The no-slip boundary condition, u = 0, on the walls implies n×U = 0 on the walls.
Together with the constraint ∇·u = trU = 0, this yields Ui1 = Ui3 = 0, for i = 1, 2, 3,
and U22 = 0 on top/bottom walls and Ui2 = Ui3 = 0, for i = 1, 2, 3, and U11 = 0 on
left/right side walls. Now, consider the edge between the top and right walls. The
conditions imply U33 = 0 on both walls, while U31 = 0 on the top and U32 = 0 on the
right side. The equation for ∂zp is then

∇ · U3 = ∂xU31 + ∂yU32 + ∂zU33 = ∂zp.

In developed flow, ∂zp = C. While this is satisfied by the exact solution, it is difficult
for functions in a finite element space to accommodate this condition. Near the
corners, the result is that the pressure p is driven toward zero and remains near zero
throughout the majority of the domain. The first line of graphs in figure 3.4 provides
a profile of p from a velocity-gradient FOSLS formulation on a relatively coarse grid.
Notice that the pressure drops quickly to zero. Small pressure corresponds to no flow,
loss of mass, and a near zero solution in the center of the domain. It is important to
note that this difficulty disappears as the grid is refined.

We confirm the above by observing the following example. Let the domain be
a cylindrical tube, {(x, y) | x2 + y2 ≤ 0.25} × [ 0, 10 ] (see fig 3.2), with the normal

vector on the walls given by n =
(

x/
√

x2 + y2, y/
√

x2 + y2, 0
)t

.

Walls : x2 + y2 = 0.25

u = (0, 0, 1 − 4(x2 + y2))tu = (0, 0, 1 − 4(x2 + y2))t

Fig. 3.2. Mass loss: Cylindrical domain, Standard boundary conditions

Simply using higher-order finite elements effectively diminishes mass loss (see
table 3.2). Note, these computations employed isoparametric hexahedral elements.
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Velocity-Gradient Vorticity
Linear(h = 1/20) Quad(1/10) Linear(1/20) Quad(1/10)

mass loss 16% 0.02% 22.3% 0.03%
functional 2.284 × 10−1 2.478× 10−4 2.092× 10−1 2.335 × 10−4

Table 3.2

Mass loss: Cylindrical domain, Standard boundary normal vector

These observations motivate the definition of a smoothly defined normal vector.
We can picture a domain with a corner rounded on the scale of the effective grid
spacing. For such a corner, the normal vector, n, would change smoothly from one
wall to the other. A similar approach would be to allow the normal vector, n, to be
a continuous function of its position on the boundary.

3.1. Smoothly changing normal vector. To avoid overspecifying boundary
conditions on the corners of the domain, we now define the normal vector as a con-
tinuous linear function of its position on the boundary. Consider the top right corner
of the boundary. The normal vector is now defined by

n(x, y, z) =

{

(0, 1, 0), when x < 1 − τ,
(

x−1
τ

+ 1, 1, 0
)

/

√

(

x−1
τ

+ 1
)2

+ 1, when 1 − τ ≤ x ≤ 1,

on the top and

n(x, y, z) =

{

(

1, y−1
τ

+ 1, 0
)

/

√

1 +
(

y−1
τ

+ 1
)2

, when 1 − τ ≤ y ≤ 1,

(1, 0, 0), when y < 1 − τ,

on the right wall near the corner for sufficiently small positive τ (see figure 3.3). The
normal vectors on the other corners are defined in a similar manner. From numerical
experiments, we have observed better results when when τ < h, then when τ ≥ h in
terms of a mass conservation and functional value convergence. Thus, smoothing is
employed only in the elements touching the corner. At the corners, the normal vector
is defined as an averaged normal vector ([17]).

Computationally, the normal vector is only evaluated at quadrature points along
the boundary. In all of the tests in this paper, τ was chosen sufficiently small so that
only the normal vector at the corner was altered, as indicated in Figure 3.3. The mesh
spacings used in this paper are relatively coarse, with h = 1/16 being the finest grid.
In practice, we recommend only changing the normal vector in the corner regardless
of the mesh spacing used. Because the normal vector is, in effect, only modified on
an O(h) portion of the boundary, the smoothly changing normal will have no effect
on the eventual convergence of the discrete approximation to the exact solution.

Newly defined normal vectorOriginally defined normal vector

Fig. 3.3. Redefined normal vector

As is apparent from table 3.3, simply redefining the normal vector on the four
corners (along the edges in three dimensions) improves mass conservation for both
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velocity-gradient and vorticity FOSLS formulations. Note that a mass loss of 2% is
good considering that the grid, h = 1/4, is very coarse. We also observe an improved
pressure near the corner and in the middle of domain from figure 3.4 (the second line).

Velocity-Gradient
Linear (h = 1/16) Quadratic (1/8) Quartic (1/4)

mass loss 92 % 17% 2%
functional value 8.592 × 10−3 9.238× 10−4 1.252 × 10−4

Vorticity
mass loss 99.75% 63.2% 13.2%

functional value 2.897 × 10−3 4.866× 10−4 8.138 × 10−5

Table 3.3

Mass loss: Square tube, Smoothly changing normal vector

0 2 4 6 8 10
−4

−2

0

2

4

z

p (original normal),  x=0.875,y=0.875

0 2 4 6 8 10
−4

−2

0

2

4

z

p (original normal),  x=0.5,y=0.5

0 2 4 6 8 10
−4

−2

0

2

4

z

p (new normal),  x=0.875,y=0.875

0 2 4 6 8 10
−4

−2

0

2

4

z

p (new normal),  x=0.5,y=0.5

Fig. 3.4. Pressure in velocity FOSLS (quadratic elements, h = 1/8)

One advantage of using this newly defined normal vector is that it does not
degrade multigrid performance while providing improved mass conservation (for ex-
ample, AMG-convergence factors in velocity formulation for both of the results in
tables 3.1 and 3.3 are 0.56 with linear element and 0.76 with quadratic elements).

3.2. Weighted boundary functional. With the same reasoning that was sug-
gested in section 3.1, we apply a different approach in this section to alleviate the
trouble from corner points. Here, instead of strongly imposing boundary conditions
in the solution space, we use weighted boundary functional to reduce the affect of
corner points. This leads us to the following modified functionals:

FSb
= FS + ‖u− g‖2

H
1

2 (∂Ω)
+ ‖w(n× U− G)‖2

H
1

2 (∂Ω)

and

GSb
= GS + ‖u− g‖2

H
1

2 (∂Ω)
+ ‖w(n · w − g)‖2

H
1

2 (∂Ω)
,
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where w is a smooth weight function defined by

w(r) =







rβ , if r < ǫ/2,
q(r), if ǫ/2 ≤ r ≤ ǫ,
1, if r > ǫ,

(3.5)

with r the distance from each corner, β a weighting parameter, and q(r) an appropri-
ately chosen polynomial. Throughout this paper, we use a C2-weight function, w(r),
satisfying (3.5) and defined by w(r) = 1+(r−ǫ)3(η−3(1−ηβ)+η−4(3−(β+3)ηβ)(r−
η)+ η−5(6−0.5(β2 +5β +12)ηβ)(r− η)2) with η = ǫ/2 when ǫ/2 ≤ r ≤ ǫ. For practi-
cality, we use the following bound to replace of the boundary functional term defined
above. For the finite element functions, u,

‖u‖2

H
1

2 (∂Ω)
≤ ch−1‖u‖2

L2(∂Ω).

Similar to using the redefined normal vector, FSb
and GSb

improve mass conser-
vation (see table 3.4).

Velocity-Gradient
Linear (h = 1/16) Quadratic (1/8) Quartic (1/4)

mass loss 95 % 28 % 3%
functional value 5.311 × 10−3 4.356× 10−4 1.929 × 10−5

Vorticity
mass loss 99.9% 81% 14%

functional value 2.417 × 10−4 6.435× 10−5 6.687 × 10−6

Table 3.4

Mass loss: Square tube, Weighted boundary functional (β = 1, ǫ = 0.3)

Although weighted boundary functionals improve the mass conservation, they
sometimes slow multigrid convergence. For example, AMG-convergence factors in
velocity formulation in table 3.4 are 0.67 with linear elements and 0.83 with quadratic
elements (compare with AMG-convergence factors in subsection 3.1). Better AMG
algorithms may alleviate this difficulty.

For all of the computations below, we use a smoothly changing normal vector on
the boundary. We now turn to a fundamentally different approach to substantially
further improve mass conservation while maintaining multigrid efficiency.

3.3. FOSLS/FOSLL*. In this section, we attempt to further improve mass
conservation by combining the techniques of FOSLS and FOSLL*. See [8] for more
details about FOSLL*. The basic idea is to solve a FOSLL* system and then use the
resulting approximate solution in a special FOSLS formulation to obtain an enhanced
solution for certain variables.

Consider the following generic, linear, first-order system:

LV =

[

L11 L12

L21 L22

] [

V1

V2

]

=

[

F1

F2

]

= F. (3.6)

The least-squares method solves (3.6) by minimizing the residual functional

G(W;F) = ‖LW − F‖2 = ‖L11W1 + L12W2 − F1‖2 + ‖L21W1 + L22W2 − F2‖2

on a Hilbert space H := H1 × H2, in the weak sense: find V ∈ H satisfying

〈LV,LW〉 = 〈F,LW〉 , ∀W ∈ H. (3.7)
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To help understand the structure of L, consider Stokes equations. Since the anal-
ysis is easier if the system has the same number of unknowns as equations in FOSLS,
we introduce slack variables and extend the velocity-gradient FOSLS formulation for
Stokes equation to the following system:

LvgV =













∇× −∇ I 0 0
∇· 0 0 0 0
0 0 ∇× −∇ 0
0 0 ∇· 0 −∇
0 ∇· 0 0 0

























Φ
u
U
φ
p













=













0
0
0
0
0













, (3.8)

where φ is a 3 × 1 vector of slack variables and Φ is a 3 × 3 matrix of slack variables
with boundary conditions φ = 0 and n × Φ = 0 on ∂Ω, respectively. Here, by
letting U33 = −U11 − U22 when U = {Ui,j}, i, j = 1, 2, 3, we implicitly include the
equation ∇(trU) = 0. Again, U33 = −U11 − U22 is imposed strongly in all numerical
experiments to avoid the extra term ‖∇(trU)‖. In (3.8), we can define

L11 =

[

∇× −∇
∇· 0

]

, L12 =

[

I 0 0
0 0 0

]

, L21 =





0 0
0 0
0 ∇·



 ,

and L22 =





∇× −∇ 0
∇· 0 −∇
0 0 0



 .

For the vorticity FOSLS, we use the formulation (2.3). Then, we have

LvorV =









∇× ∇ −I 0
−∇· 0 0 0
0 0 ∇× ∇
0 0 −∇· 0

















u
α
w
p









=









0
0
0
0









, (3.9)

where α is a scalar slack variable, and

L11 =

[

∇× ∇
−∇· 0

]

, L12 =

[

−I 0
0 0

]

, L21 =

[

0 0
0 0

]

, and L22 = L11.

If L is continuous and coercive, then the range of L is closed, which, in turn,
implies that, if LV = F has a solution in H, then LL∗Ṽ = F has a solution in the
domain of L∗, which we denote by S (see lemma 2.1 in [8]). Thus, V = L∗Ṽ is the
solution.

The FOSLL* approach directly addresses the system L∗Ṽ = V. Here, the corre-
sponding dual problem of (3.6) is

L∗Ṽ =

[

L∗

11 L∗

21

L∗

12 L∗

22

] [

Ṽ1

Ṽ2

]

=

[

V1

V2

]

. (3.10)

The FOSLL* scheme minimizes the least-squares dual functional,

G∗(Ṽ;V) = ‖L∗Ṽ − V‖2,

on a Hilbert space, S, and the corresponding weak formulation is: find Ṽ ∈ S satis-
fying

〈

L∗Ṽ,L∗Z
〉

= 〈V,L∗Z〉 = 〈F,Z〉 , ∀Z ∈ S. (3.11)
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Note that the right-hand side is computable. This may be viewed as a Galerkin
approximation to LL∗Ṽ = F.

Now, we introduce a technique to obtain an enhanced approximation for variable
V1 by FOSLL*. In the finite-dimensional subspace Sh ⊂ S, FOSLL* is approximately
solved to get (Ṽh

1 , Ṽh
2 ) ∈ Sh. We then have

[

L∗

11 L∗

21

L∗

12 L∗

22

] [

Ṽh
1

Ṽh
2

]

=

[

Vh
1

Vh
2

]

. (3.12)

Suppose that L11 is coercive and continuous on H1 and that L12 does not contain any
derivatives. Then, from the approximation obtained by FOSLL* in (3.12), we can get
an enhanced approximate solution, Vh

1 , for V1 from the following system:

L11V
h
1 = F1 − L12V

h
2 = F1 − L12(L∗

12Ṽ
h
1 + L∗

22Ṽ
h
2 ). (3.13)

It is easy to see that, for F1 = 0,

‖L11(V1 − Vh
1 )‖ = ‖L12(L∗

12(Ṽ1 − Ṽh
1 ) + L∗

22(Ṽ2 − Ṽh
2 ))‖

≤ ‖L12‖ ‖V2 − Vh
2‖.

Thus, the enhanced approximation inherits the same order of convergence as the
FOSLL* approximation.

Our aim is to use the FOSLS and FOSLL* schemes together to obtain better
mass conservation. We rewrite the first-order systems of Stokes equations in the form

LV = F,

where V = (Φ,u,U, φ, p)t in the velocity-gradient formulation, V = (u, α,w, p)t in
the vorticity formulation, and L is the corresponding linear operator. The framework
of FOSLS/FOSLL* approach follows. First, we obtain Vh

0 by minimizing ‖LV−F‖2

over an appropriate finite element space and then consider the residual equation,

LW = F − LVh
0 (:= R), (3.14)

where W = V − Vh
0 . Next, we use the corresponding dual problem to get an L2

approximation, Wh, to W. Since we solve for the differences with FOSLL*, this
approach fits well for the Navier-Stokes equations. We discuss this in detail in section
4. We obtain Wh = L∗W̃h by minimizing ‖L∗W̃h − W‖ over an appropriate finite
element space, which is computed using the weak form:

< L∗W̃h,L∗Z̃h >=< R, Z̃h > .

We, then, construct the hybrid solution that combines the original H1 approximation
and the L2 approximation,

V̂h = Vh
0 + Wh.

We call this a hybrid solution because, in general, Vh
0 will be from an H1 conforming

finite element space, while Wh will be the image of an H1 conforming finite element
function under L∗.

Finally, we obtain the enhanced approximation, Vh
1 , by minimizing the functional

‖L11V
h
1 + L12V̂

h
2 − F1‖. (3.15)
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Velocity-Gradient
Linear (h = 1/16) Quadratic (1/8) Quartic (1/4)

mass loss 18% 0.16 % 0.03%

Vorticity
mass loss 87% 35% 1.5%

Table 3.5

Mass loss: Square tube, FOSLS/FOSLL*-sn (smoothly changing normal)

The assumption that L12 contain no derivatives assures that L12V̂
h
2 ∈ L2.

In the context of the velocity-gradient form of Stokes equations, the process is
simplified because of the slack variables. From (3.8), setting the slack variable Φ = 0

reduces (3.15) to the minimization ‖∇u− Ûh‖. Here, the hybrid approximation, Ûh,

is obtained through the process described above. To be more precise, Ûh = Uh
0 +Uh

1 ,
where Uh

0 comes from the H1 minimization and Uh
1 comes from the L2 minimization

of the residual equation as part of L∗

12 W̃h
1 + L∗

22 W̃h
2 , namely

Uh
1 := Φ̃h + ∇× Ũh −∇φ̃h,

where W̃h
1 = (Φ̃h, ũh)t and W̃h

2 = (Ũh, φ̃h, p̃h)t.
Finally, we get an enhanced approximation for u by minimizing

Gvg(u; Ûh) = ‖∇u− Ûh‖2 + ‖∇ · u‖2,

again over an appropriate finite element space.
Analogously for the vorticity FOSLS formulation, we form a hybrid approxima-

tion, ŵh = wh
0 +wh

1 , where wh
0 comes from the H1 minimization and wh

1 comes from
the L2 minimization on the residual equations as part of L∗W̃h, namely

wh
1 := −ũh + ∇× w̃h + ∇P̃ h.

We obtain an enhanced approximation of u by minimizing the functional

Gvor(u; ŵh) = ‖∇× u − ŵh‖2 + ‖∇ · u‖2,

where wh = wh
0 + wh

D is a hybrid approximation.
By applying the FOSLS/FOSLL* approach to (3.8) and (3.9), we obtain dramat-

ically improved mass conservations. In the velocity-gradient formulation, the method
of FOSLS/FOSLL* reduces the mass loss from 76.2% to 0.16% with quadratic finite
elements and mesh h = 1/8 on the 1 × 1 × 10 domain (see table 3.5 and compare
to tables 3.3 and 3.4). (For these computations, we use a smoothly changing normal
vector on the boundary in both of FOSLS and FOSLL* steps in FOSLS/FOSLL*.)

Also, we compare FOSLS and FOSLS/FOSLL* in terms of the central cross-
section of flow through the domain in figures 3.5 and 3.6, respectively, where the lines
are contour lines of the flow and the arrows are the flow field. The flow dissipates when
only FOSLS is used. As figure 3.6 shows, with FOSLS/FOSLL*, the parabolic profile
at the inlet immediately changes to steady flow, which means that it is essentially
independent of z-direction, until right before it reaches the outlet where the parabola
boundary condition is specified.

To explain why the FOSLS/FOSLL* approach improves mass conservation, con-
sider the following simple example. Assume that we have a linear first-order system,
LU = F , where ‖LU‖2 is equivalent to the H1-seminorm, |U |2

H1(Ω) = ‖∇U‖2. Here,



12 J. Heys, E. Lee, T. Manteuffel, S. McCormick, and J. Ruge

Fig. 3.5. Cross section of flow with standard velocity FOSLS (quadratic elements, h = 1/8)

Fig. 3.6. Cross section of flow with velocity FOSLS/FOSLL*-sn (quadratic elements, h = 1/8)

coercivity in the H1 norm is established through a Poincaré-type inequality. First,
by minimizing ‖LU − F‖2, we obtain an approximate solution, Uh

0 , in a finite ele-
ment space, Hh. That is, Uh

0 is the minimizer of the functional ‖LV h − F‖2, which
is equivalent to |V h − U |2

H1(Ω), in the finite-dimensional space Hh. While FOSLS

minimizes the error in H1-seminorm, FOSLL* minimizes the error in L2-norm by
minimizing ‖L∗D̃ − D‖2, which is equivalent to ‖Dh − D‖2, where Dh = L∗D̃ and
D = U − Uh

0 . Then, our hybrid approximation for U is Uh = Uh
0 + Dh. This new

approximate solution is composed of our best approximate solution, Uh
0 , in a current

least-squares finite element space (H1-conforming space) obtained from minimizing
the error in an H1-seminorm-equivalent functional and a correction, Dh, that is ob-
tained by minimizing an L2-equivalent functional. The correction Dh is the image
of an H1-conforming finite element function under L∗. In essence, Dh is from an
L2-conforming space, and will, in general, be discontinuous.

3.4. Backward-facing step. Consider the backward-facing step domain shown
in figure 3.7. An analysis of the least-squares method for Navier-Stokes equations on
such a domain can be found in [11]. Our prototype domain has the ratio 1 × 1 × 10
and the step has a height 0.5 and a length 2, that is, a 1×0.5×2 notch of the bottom
corner is removed. The velocity boundary condition on the outlet (z = 10) is the same

u = 0

u = ( 0 , 0 , x(1-x)y(1-y) )
u = ( 0 , 0 , 8x(1-x)(y-0.5)(1-y) )

Fig. 3.7. Backward facing step domain

as given in (3.1) and the velocity boundary condition on the inlet (z = 0, y > 0.5) is
given by

n × u = 0 and n · u = 8x(1 − x)(y − 0.5)(1 − y). (3.16)

A no-slip boundary condition is imposed along the walls. The domain has a reentrant
edge, which means an edge with the inner angle bigger than π, where y = 0.5 and
z = 2. Therefore, FS is not equivalent to the H1-norm because of the singularity
on the boundary and this singularity may result in a loss of global accuracy. Weight
functions can be used around the singularity to overcome this difficulty [13],[14]. Here,
we use a typical weight function, w(r), defined as in (3.5), where r is now the distance
from the reentrant edge and ǫ is the radius of the weight function, with β = 2 and
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radius ǫ = 0.3 used in our numerical experiments in this section. The aim, now, is to
minimize the functionals

FSw
(u,U, p) = ‖U −∇u‖2 + ‖∇ · u‖2

+ ‖∇ · U −∇p‖2
w + ‖∇ × U‖2

w + ‖∇(trU)‖2
w (3.17)

and

GSw
(u, α,w, p) = ‖∇×u +∇α −w‖2 + ‖∇ · u‖2 + ‖∇×w +∇p‖2

w + ‖∇ · w‖2
w,

(3.18)

where ‖ · ‖2
w =

∫

Ω
w(r)2| · |2dΩ. Note that we do not use any mesh refinement around

the singularity as this will not alleviate the difficulty.
The observation suggests that most of the mass loss occurs near z = 2 where the

narrow tube becomes enlarged. Table 3.6 compares the results with standard FOSLS,
FOSLS-sn (smoothly changing normal vector), and FOSLS/FOSLL* when quadratic
elements on mesh h = 1/8 are used in the velocity-gradient formulation. Figures 3.8
and 3.9 show cross-sections of the flow, u, at x = 0.5. If we use quartic elements
with h = 1/4 for FSw

, then the mass loss reduces to 61% (functional=1.222 × 10−2)
for standard FOSLS and 15% (functional=1.708× 10−3) for FOSLS with a smoothly
changing normal vector.

FOSLS FOSLS-sn FOSLS/FOSLL*-sn
mass loss 86 % 33% 3%

Table 3.6

Mass loss: Backward step, Stokes velocity-gradient, Quadratic elements, Mesh h = 1/8

Fig. 3.8. Cross-section of flow with standard velocity FOSLS (quadratic elements, h = 1/8)

Fig. 3.9. Cross-section of flow with velocity FOSLS/FOSLL* (quadratic elements, h = 1/8)

Table 3.7 shows the mass loss from minimizing the vorticity FOSLS functional
(3.18) with and without modification of the normal vectors. Compare the results
with smoothly changing normal vector and quadratic elements with mesh h = 1/8
for the velocity-gradient formulation (table 3.6) and the vorticity formulation (table
3.7). The former shows a mass loss of 33% while the latter suffers a mass loss of
81%. In the case of a domain with a reentrant edge, the vorticity formulation shows
a greater mass loss. We see similar behavior with Navier-Stokes equations and will
explain more details in the following section.

4. Mass conservation for the Navier-Stokes equations. In this section,
we return our attention to the Navier-Stokes equations introduced in section 2. All
of the approaches suggested in section 3 can be easily applied to the Navier-Stokes
equations. For example, if we use a smoothly changing normal vector in the square
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Linear(h=1/16) Quadratic(1/8) Quartic(1/4)
FOSLS 99.99% 99.99% 99.99%
functional value 1.182× 10−2 4.292× 10−3 2.295 × 10−3

FOSLS-sn 99.9 % 81% 24%
functional value 1.064× 10−2 2.108× 10−3 4.238 × 10−4

Table 3.7

Mass loss: Backward step, Stokes vorticity, FOSLS and FOSLS-sn

tube (1 × 1 × 10), then we can reduce the loss of mass in the middle of domain
from 76% to 16.6% with quadratic elements and h = 1/8 for Re = 100 by using the
velocity-gradient formulation (2.4).

It is known that scaling often helps the mass conservation for large Re ([10]). We,
thus, consider the Navier-Stokes functional rescaled by

√
Re [10]:

FNw
(u,U, p : 0) = ‖U−∇u‖2 + ‖∇ · u‖2 + ‖ −

√
Reu ·U − 1√

Re
∇p +

1√
Re

∇ · U‖2
w

+ ‖ 1√
Re

∇× U‖2
w + ‖∇(trU)‖2

w , (4.1)

where ‖ · ‖2
w =

∫

Ω w2| · |2dΩ, w = 1 in a regular domain, and w = w(r) defined as
in (3.5) in the presence of a reentrant edge with r the distance from the reentrant
edge. In table 4.1, we compare the numerical results with and without scaling in the
functional in the square tube.

minimizing functional FOSLS FOSLS-sn
(2.4) F 76% 16.6%
(4.1) FNw

(w = 1) 11% 2.6%
Table 4.1

Mass loss: Square tube, Navier-Stokes velocity-grad, Re = 100, Quadratic elements, Mesh h = 1/8

Dividing the third and fourth terms on the right side in (2.4) by
√

Re emphasizes
the first, second, and fifth equations in the least-squares minimization. Thus, mass
is better preserved because of the increased emphasis on the mass equation, ∇ ·
u = 0, in minimization. (Recall that the trace constraint is enforced by eliminating
one dependent variable.) For example, when Re = 500, mass loss is reduced to
1.2% with the functional (4.1), smoothly changing normal vector, quadratic elements,
and h = 1/8. Fortunately, adding a scalar weight to these equations can have a
positive effect on the performance of solvers. In general, we find that (4.1) yields
better AMG performance. For instance, in the tests described in table 4.1, the AMG
convergence factors were 0.81 with the original functional (2.4) and 0.62 with the
rescaled functional (4.1).

Next, we focus on the FOSLS/FOSLL* approach introduced in section 3.3, which
is perhaps more compelling for the nonlinear Navier-Stokes equations because ap-
plying FOSLL* amount to just one more linearization in the framework of Newton
iterations. We first apply Newton’s method to the first-order nonlinear systems (2.2)
and (2.3), or their rescaled versions, and then approximately solve the resulting lin-
earized problem as follows. Systems (2.2) and (2.3), or their rescaled versions can be
written in the form

L(V) = 0, (4.2)
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where L is a corresponding nonlinear operator. We linearize (4.2) around V0 by
applying Newton’s method:

L′(V0)[ V − V0] = −L(V0), (4.3)

where L′(V0)[V − V0] denotes the first Fréchet derivative of L at V0 in direction
V − V0. By letting L̂ = L′(V0), W = V − V0, and F = −L(V0), we recast (4.3) as

L̂W = F. (4.4)

We then apply the least-squares method, that is, we minimize the residual functional

‖L̂W − F‖2.

Once we have an approximation, Wh, for W, then our new approximation for V is
V0 + Wh. This is one Newton iteration in a least-squares context. After doing a
sufficient number of Newton iterations, we then do one final linearization and again
consider linear system (4.4). Now, however, instead of minimizing the functional
‖L̂W−F‖, we solve for the dual problem L̂∗W̃ = W to get a hybrid approximation
to V and an enhanced approximation to the velocity, u, in accordance with the
FOSLS/FOSLL* approach. We obtain an approximation Wh (:= L̂∗W̃h) of V −
V0 by solving the corresponding variational formulation of the dual minimization
problem: find W̃ satisfying

W̃ = arg min
Z̃

‖L̂∗Z̃ − W‖.

Our hybrid approximation for V is thus Vh = V0+Wh and we then get the enhanced
approximation of the velocity by minimizing the FOSLS functional

‖∇u − Uh‖2 + ‖∇ · u‖2 or ‖∇× u − wh‖2 + ‖∇ · u‖2, (4.5)

where Uh and wh are elements of the hybrid approximation, Vh = V0 + L̂∗W̃h.
In the following subsections, we compare the methods described above for Navier-

Stokes equations in the backward facing step domain. Since there is a singular edge
on the boundary, we redefine the functionals in (2.4) and (2.5) to

Fw(u,U, p : 0) = ‖U−∇u‖2 + ‖∇ · u‖2

+ ‖ − Reu · U −∇p + ∇ ·U‖2
w + ‖∇× U‖2

w + ‖∇(trU)‖2
w (4.6)

and

Gw(u, α,w, P : 0) = ‖∇× u + ∇α − w‖2 + ‖∇ · u‖2

+ ‖ − Reu× w + ∇P + ∇× w‖2
w + ‖∇ · w‖2

w, (4.7)

respectively, where ‖ · ‖w is a weighted norm defined as in (4.1).

4.1. Backward-facing step: velocity-gradient FOSLS formulation. In
this subsection, Navier-Stokes in a backward-facing step domain is considered. The
domain is the same as shown in figure 3.7. All of the numerical results in this sub-
section are based on minimization of the velocity-gradient formulation least-squares
functional with quadratic elements and h = 1/8. Here, we set the weight parame-
ter β = 2 and radius ǫ = 0.125 in (3.5) and use the corresponding weighted-norm
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Fig. 4.1. Velocity flow and stream lines with standard FOSLS at x = 0.5, Re = 500

Fig. 4.2. Velocity flow and stream lines with rescaled sm-FOSLS at x = 0.5, Re = 500

Fig. 4.3. Velocity flow and stream lines with rescaled sm-FOSLS/FOSLL* at x = 0.5, Re = 500

for the third and fourth terms in (2.4) and (4.1). By letting U33 = −U11 − U22

where U = {Ui,j}, i, j = 1, 2, 3, the equation ∇(trU) = 0 is included implicitly. We
compare numerical results with the Reynolds number Re = 100 and 500. The most
mass loss occurs where the flow enters the bigger channel at z = 2. As briefly men-
tioned at the beginning of section 4, table 4.2 shows that in rescaled functional the
larger Reynolds number provides better mass conservation. Similarly to Stokes case,
a smoothly changing normal vector and the correction from FOSLS/FOSLL* both
improve mass conservation.

functional FOSLS FOSLS-sn FOSLS/FOSLL*-sn

Re = 100
(4.6) Fw 92% 73% 43.7%
(4.1) FNw

35% 25% 8%

Re = 500
(4.6) Fw 87% 56% 0.6%
(4.1) FNw

13% 10% 0.2%
Table 4.2

Mass loss : Backward step, Navier-Stokes velocity-grad, Quadratic elements, h = 1/8

In figures 4.1, 4.2, and 4.3, we compare the cross sections of velocity flows and
stream lines with different approaches when the Reynolds number is 500. The veloc-
ity flow and steam line in figure 4.1 are obtained by minimizing the standard FOSLS
functional (2.4) with no modification in normal vector. Figure 4.2 is from the mini-
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mization of the rescaled functional (4.1) with a smoothly changing normal vector and
figure 4.3 is after replacing FOSLS with FOSLL* after the last Newton iteration of
the result in figure 4.2. In figure 4.2, the recirculation at the left bottom starts to
appear and this recirculation appears more clearly in figure 4.3 while the standard
FOSLS approach does not show any recirculation.

4.2. Backward-facing step: vorticity FOSLS formulation. We now con-
sider the vorticity functional (2.5) and following rescaled functional in a partially
weighted norm with Re = 100 and 500:

GNw
(u, α,w, P : 0) = ‖∇× u + ∇α − w‖2 + ‖∇ · u‖2

+‖ −
√

Reu × w +
1√
Re

∇P +
1√
Re

∇× w‖2
w + ‖ 1√

Re
∇ ·w‖2

w. (4.8)

We use the 1×1×7 tube with a 1×0.5×2 notch in the lower left corner removed.
Again, we set the weight parameter β = 2 and radius ǫ = 0.125 in (3.5).

functional FOSLS FOSLS-sn FOSLS/FOSLL*-sn

Re = 100
(4.7) Gw 99.99 % 91% 92.4%
(4.8) GNw

42.8% 35.6% 40%

Re = 500
(4.7) Gw 99.99% 97% 97.4%
(4.8) GNw

51.3% 51% 56%
Table 4.3

Mass loss: Backward step, Navier-Stokes vorticity, Quadratic elements, h = 1/8

functional FOSLS FOSLS-sn FOSLS/FOSLL*-sn

Re = 100
(4.7) Gw 97% 43.6% 48%
(4.8) GNw

13.4% 6.5% 9%

Re = 500
(4.7) Gw 97.5 % 61 % 69%
(4.8) GNw

7.4% 6.7% 8.2%
Table 4.4

Mass loss: Backward step, Navier-Stokes vorticity, Quartic elements, h = 1/4

Tables 4.3 and 4.4 show the mass loss with quadratic (h = 1/8) and quartic
(h = 1/4) elements, respectively. Similarly to the results for the Stokes vorticity for-
mulation in section 3.4, standard FOSLS formulation provides poor mass conserva-
tion. However, the rescaled functional improves mass conservation with higher-order
elements.

The results in table 4.3 may lead us to the conclusion that the correction from
FOSLL* does not improve mass conservation if the FOSLS solution is not good
enough. However, table 4.4 shows that, with the vorticity formulation and in the
presence of a reentrant edge, the FOSLL* step does not help mass conservation even
though we have better mass-conserved approximate solution. For example, rescaled
FOSLS with smoothly changing normal vector has 6.5% of mass loss with quartic ele-
ments and h = 1/4, but, after replacing the last Newton iteration with a FOSLL* hy-
brid solution, the mass loss is 9% which is a little bit worse than without the FOSLL*
correction. Comparison with the results in table 3.5 from the square tube domain con-
firms that the singularity on the edge degrades the performance of FOSLS/FOSLL*
approach in the vorticity formulation. Currently, we only have a rough guess of the
reason for this. In the presence of a boundary singularity, which requires the use of
a weight function, the div/curl system (in our case, the one induced from the vortic-
ity FOSLS formulation) usually has trouble finding an accurate approximate solution



18 J. Heys, E. Lee, T. Manteuffel, S. McCormick, and J. Ruge

with H1-conforming finite elements. Our guess is that the FOSLL*-step with div/curl
system and boundary singularity may introduce more error in L2-correction process
in the context of a Newton iteration. Finding the exact reasons for failing to improve
the mass conservation in vorticity formulation with the FOSLS/FOSLL* approach
will be our future work.

In papers [9] and [10], we developed ways to enhance conservation in the vorticity
formulation by introducing new variables.

5. Conclusion. Least-squares finite element methods minimize the continuity
equation in an L2-norm as one of a number of terms and, thus, do not enforce ex-
act mass conservation in the solution space. In some contexts, this yields severe
mass loss in the velocity flow, especially on under-resolved grids in long thin domains
with velocity boundary conditions. In this paper, we introduce a modified normal
vector near corners, a weighted-norm boundary functional, and a FOSLS/FOSLL*
hybrid solution to reduce the loss of mass in both velocity-gradient and vorticity
FOSLS formulations. Overall, results show that the velocity-gradient formulation
conserves mass better than the vorticity formulation. Using a modified normal vec-
tor and weighted-norm boundary functional provide similar mass conservation, but
the boundary functional approach often degrades the performance of the AMG solver
while the modified normal vector does not affect the AMG solver. The best mass
conservation is achieved by, in addition, forming a hybrid approximate solution using
a FOSLL* correction in the velocity-gradient formulation with high-order elements.
While the FOSLL* step involves extra work in the context of Stokes equations, it is
just one of perhaps many Newton steps when solving the Navier-Stokes equations.
Finally, we find that the FOSLS/FOSLL* approach does not help mass conservation
in the vorticity formulation in the presence of a singularity. The explanation of this
phenomena is the focus of future reserch.
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