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ABSTRACT

Many matrix equations are either inherently discrete (e.g., geodesy) or for
Practical purposes remote from their origin (e.g., a finite element
discretization on a preselected irregular grid). AMG is an algorithm designed
to solve such problems by using information contained only in the matrix, while
at the same time basing itself on multigrid principles. This paper introduces
and develops AMG and reports on numerical experiments with various matrix

problems from differential equations and geodetic computations,

1. Introduction

The class of problems to which multigrid methods have been npélied
successfully is constantly growing. So far, most of them have been derived from
continuous problems, where knowledge of the underlying geometry is used as a
guide to provide several uniform discretizations of the domain. Each of these
so—called grids or levels can be used a8s a uniform coarsening of the next finer
one, The solution process, which involves relaxation sweeps on each grid,
fine-to-coarse grid transfers of residuals, and coarse-to-fine grid
interpolations of corrections, constitutes a very fast solver for the finest-
grid equations. In fact, whether the equations are linear or not, a solutionm
(with algebraic error smaller than truncation error) is typically obtained in
four to team work units, where a work unit is the amount of computer operations
required to express the equations,

Although this process seems to rely heevily on the geometry and continuous
nature of the problem, the principles involved in solving the fine grid matrix
system can be abstracted from its origins and applied to a number of matrix
problems, The aim of this paper is to develop an algorithm of this type,
algebraic multigrid (AMG), that results from basing multigrid concepts solely on
information contained in the matrix. The potential benefits of AMG include:

1, '‘Black box'’ multigrid software The virtues here are obvious,

especially in light of the present state of multigrid software and



4.

the substantial human design effort needed for many multigrid
applications.

Unorganized grid applications, Vhen the given grid is not
topologicuily piecewise uniform, such as for finite element
discretizations with arbitrary, irregular triangulations,
conventional multigrid design may be faced with difficulties.
Determination of coarsening (i.e., the coarse grids and their
associated operators) may not be practical. A further difficulty in
such problems is to choose both relaxation and coarsening for
efficient solution, especially when the problem exhibits certain
directional properties (e.g., anisotropic operators, which require
either some form of block relaxation or semi~coarsening). These
difficulties disappear in the AMG approach.

Pathological coefficient applications, Even for uniform

discretizations, conventional coarsening may not be able to account
for certain pathologies in the equation coefficients., Such is the
case, for example, with five-point discretizations of two—-
dimensional diffusion problems where the diffusion coefficients are
disgribnted in some particular patterns (see [1; Sec. 8]). Again,
AMG would have no difficulty in such cases since it will select much
better coarse grids than the ’'natural’ ones.

Algebraic problems, AMG may be applied to large sparse 1linear and
nonlinear systems which are not derived from continuous problems,
including the geodetic application treated in section 6. Many of
these problems are such that each unknown is associated with a point
of a low dimensional space (e.g., dimension 2 or 3) and that most of

the points exhibit pairwise couplings (i.e., matrix entries) that
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either diminish or become smooth as the distances between the points
increase, It is this feature of an algebraic problem that should
allow for efficient solution by AMG.

The need for basing inter-grid transfers on the strengths of the algebraic
couplings has already been discovered in the application of multigrid to
diffusion problems with strongly discontinuous coefficients [1]. That work 1led
to a geometric multigrid algorithm [6] where the grid transfers are based solely
on the algebraic equation. The present work, referenced briefly first in [3;
Sec. 13.1], is a muoch further step in that directiom since mo explicit geometric
information is required.

Multilevel processing for the solution of problems not derived from
continuous, nor even geometrically-based, systems has for a long time been used
in economics (cf., [5] and the survey in [7]). In a sense, nobody 'invented’
it; multilevel organization is simply the way society itself found efficient.
This concept led to iterative aggregation algorithms (cf., [7], [11]). 1In these
algorithms, the coarsening (aggregation) procedures are supposedly given by the
nature of the problem just as they are in usual multigrid algorithms and other
geometrically-~based multilevel processing. The main point of AMG, by contrast,
is the complete automation of the coarsening procedures, including the selection
of the coarser 1levels and the inter—level transfers, basing them on the given
matrix only. The efficiency obtained by AMG is similai to the typical multigrid
efficiency, which is not approached by the less sophisticated aggregation
methods.

The AMG structure provides more than a fast linear solver. It can, for
example, be wused to solve with similar speed n;nlinear problems, to update for
negligible work the entire solution as the problem changes 1locally, to solve

large problems in small storage and to give inexpensive representation and



computation to the inverse of large sparse matrices. Some of these prospects

are discussed in Sections 6.7 and 7.

2. Multigrid Principles

A two—level multigrid scheme is briefly examined here in order to isolate
the working principles of a successful multigrid application, Assume for focus
that the problem is a continuous one of the form
(2.1) LU =
where L is a symmetric, positive definite, linear operator defined on a suitable

class of functions with domain G in Rd. d a positive integer. Let Gh and G2h be

two uniform discretizations of G so that Gh = {x in G: x = h(il. iz.....id),
ijsijeeesiy integers), and "= (x in 6" ijsiyee.n,ig even}. Let grid
transfer operators be denoted by

Igh : G2h € Gh (d-linear interpolation, for example)
and

Iih : Gh € 62h (some weighted average or injection).

Then let Lh and L2h be defined as discrete approximations to L on Gh and GZh.

respectively. Let uh depote the current approximation to the exact solution U

of the fine grid equation

(2.2) Lot = gt
Then a multigrid cycle consists of applying some relaxation scheme, such as

Gauss-Seidel or Jacobi iteration, followed by a residual equation transfer to

G2h via

(2.3) L2V?P - Iih (e® - Lhby .



This problem is then 'solved’ and used to correct the fine grid solution

approximation according to
(2.4) nh € nh + I;hVZh'

The reason for the efficiency of such a multigrid scheme is that, with
proper choice of the grid transfer and coarse grid operators, the error that
cannot be eliminated by the coarse grid correction (2.4) is effectively reduced
by relaxation. To ensure that the coarse grid correction actually does what it
is intended to do, it is necessary to define L2h in the right way. Note that
(2.3) and (2.4) imply that the coarse grid correction is given by

h 2h

+Ih (L

-1 h hh
2h ) Ih(f —Lu )a

(2.5) nh €u

Letting eh = Uh - nh denote the error, them (2.5) can be rewritten as

h h 2h.-1_2h h, h,
(2.6) "¢ (1- 1y, Ith Ye

Hence, the goal of the correction is roughly to eliminate error inm R(Igh)' the

range of the interpolation operator. Thus, if eh = I;h v2h for some v2h, it is

desirable that

h 2h -1.2h h,.h 2h _
(I IZh(L ) Ih L )IZhv =0

or, since Ih should be full rank, that

2h

_ ,¢2h,-1_2h h_h
I= W L.

Hence,



2h 2h h.h
(2.7) L Ih L IZh

can serve as a general prescription for the coarse—-grid operator.
The two—level algorithm just described becomes & multigrid algorithm by

applying it recursively; that is, a sequence of increasingly coarser grids

6%,6l,...,6" is defined so that GX = {x im G: x = 2kh°(11.12,...,1d),

11,12,...,id integers}. Thus, grid kX has mesh width hk = Zk ho. where ho is the

fine grid mesh width., Grid operators LO. Ll, coes LM (for simplicity, Lk will

k
sometimes be used in place of Lh , and similarly for other operators) are

defined on all grids, and the number V of relaxation sweeps per grid is
specified. Given an approximation, uh, to the solution of (2.2), then one

multigrid cycle on grid h = h1 is denoted by uh4-MG(h. uh. fh) and defined

recursively by:

If h = Zuho, set nh = (Lh)_lfh.

Otherwise do the following:

Percform V relaxation sweeps on (2.2);

set u2h = (0 and th = Iih(fh-Lhuh);
set u2h 3 MG(Zh,uZh.th);and

h h h 2h
set u € u + Izhu .

There are many possible variations of this algorithm, but this serves to
illustrate the recursive nature of multigrid.

Since the solution process is essentially the same on all grids, in case Lh
is a symmetric, positive definite operator, it is best if L2h is ﬁlso. This is
easiest to ensure by defining Lh by (2.7) with

2h h .\ T
(2.8) Ih = (IZh)



Note that properties (2.7) and (2.8) completely define the coarse grid problem
in terms only of interpolation and the fine grid operator.
To motivate (2.7) and (2.8) further, note for symmetric, positive definite

Lh that Gauss-Seidel, as well as many other relaxation methods, can be viewed as

a2 minimization algorithm for the 'energy’ functiomal

(2.9) FP (ul) =ulT LBgR g P Tghe

(Note that Fh(uh) - Fh(Uh) = ehTiheh. the energy norm of the error.) Assume

that G2h and I:h are given. Then, with an approximation uh to Uh, it is optimal

in terms of Fh to define the coarse grid problem (2.3) as that of finding a V211

in G2h that minimizes over G2h the functional

T T T ,T
i S L (I, (£7-L%h)).

h
(IZhL IZh)v

(2.10) Fh(nh+I;hv2h) = Fh(uh)+v2

(2.7) and (2.8) are then direct results of this discrete variatiomal
formulation. The main advantage of this variatiomal formulation is that (2.10)
completely eliminates the error in the range of interpolation. It is therefore
sufficient to ensure that this range properly represents the error components

not reduced by relaxation (cf., [9]).

3. AMG for Symmetric Positive—Tvype Matrices

The discrete variational formulation can, therefore, be used in the
symmetric cﬁse as a basis for constructing the multigrid processes once choices
are made for the coarse levels GQ and their interpolation operators Ii—l, 1 (2
X M. To understand how these choices can be made based solely on the entries of
the fine grid matrix Lo, it is first important to understand the concepts of

strong dependence and smoothing as algebraic properties. This is dome by way of



example with the following class of mufrices.

Definition. A symmetric matrix is positive—type if all of its off-diagonal
entries are mnonpositive and each row sum is nonnegative. If each row sum is
zero, it is called a zero row sum matrix.

Unless otherwise stated, it will henceforth be assumed that L° is
positive-type and zero row sum. The latter assumption is for convenience in
describing efficient coarsening and relaxation processes, but as noted in
Section 3.1 is otherwise inessential. For a discussion of nonpositive—type
matrices, see Section 4.

An important algebraic concept is that of a neighborhood, which is based on
the following definition.

Definition. Variable i is strongly dependent on variable k with strength

a) 0 if

0 o
(3.1) --Lik Ja f;; (-Lij)

The quantifier 'with strength ¢’ will be omitted when it is clear from context

or when quantification is unnecessary. (Note that the maximum must be attained
over j # i since Lgi 2 0, and that this maximum is positive unless the ith row

of L° is null. Moreover, because (3.1) is a relative measure, the strength of
dependence of i on k may be arbitrarily different from that of k on i.) In what
follows, local and neighborhood will be used as algebraic concepts based on
strong dependence; e.g., k and i are direct neighbors if i depends strongly on k
or k depends strongly on i.

The uniqueness of AMG lies in its atteﬁbt to automatically design the
process of relaxation and coarsening. (Co;rsening here refers to coarse level
selection and interpolation prescription.) This design is a systematic problem

since these processes should not be determined independently of each other (cf.,



[3; Section 3.3]). A basic decision made for the current AMG is to use point
relaxation (e.g., Gauss—Seidel with C-F ordering described in Section 3.4)
because its smoothing properties facilitate coarsening and because block
relaxation (e.g., line relaxation) is inconvenient to automate (e.g., since
lines are unspecified). In fact, the matrix equations which would arise in block
relaxation, one matrix for each block, may best be solved by AMG based on point
relaxation, thereby obviating the mneed for such blocks as anything but a
conceptual tool.

It is not difficult to prove that properly chosen point relaxation quickly
reduces errors that show large residuals comﬁared with their own size, that is,

errors that satisfy

(3.2) LT~ T8 el

More precisely, proper point relaxation will always converge efficiently until a

stage is reached in which the errors produce relatively small residuals:

(3.3) HLe®l << [ie®]l.11e°1]

Then and only then must point relaxation slow to an unacceptable rate, but it is
just for such errors that smpothness occurs and may be used as a basis for
coarsening strategies. Specifically, errors that satisfy (3.3) approximately
lie in an invariant subspace of L® corresponding to its small eigenvalues. For
positive—type (and other) operators Lo, any vector eo in such a subspace
exhibits smoéthness in the sense that it is approximately a local constant, that

is,

(3.4) e: ~ e if i strongly depends on k.

i

Another way to see that error smoothness is produced directly by point

_10_



Gauss—Seidel is to interpret it as a local averaging process. Indeed, in terms

of the error o° = U° - no. this relaxation is given by

o
o Lik o
(3.5) ei “ r ek
k¥1i L, .
ii
where
(o]
L,
(3.6) el
k#i L.
ii

The coarsening strategy is described in Section 3.2. It is important first

to discuss the assumption of zero row sum,

3.1 Zero row sum/slack variable

Any positive-type matrix that has positive row sums can be altered to one
with only zero row sums by augmenting it to include a slack variable. This is
done by providing for each equation the slack variable with a coefficient equal
to the negative of the original coefficient sum for that equation. The
augmented L° will maintain symmetry if the equation associated with the slack
variable is defined as the negative sum of all the other equations., It is for
convenience of concept and practice that such a variable is wused in AMG whqn
necessary to obtain zero row sum,

This process leads to a matrix that is, of course, singular: the vector 8,
consisting of all 1's, constitutes a basis for its null space. There is,
however, no cause for concern since any solution, uo, of the augmented problem

for L° gives the unnique solution of the original equation by the correction

(3.7) uo—uo—nz 8 ,

where ug is the value of the slack variable. Note that the residual

-11-~
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r =f ~-L u

is unchanged by (3.7). Note also that (3.7) is a perfectly smooth change to the
error 8o that it need only be performed on the coarsest level,

The use of a slack variable for positive—type problems is not only
convenient but leads naturally to effective relaxation and coarsening
procedures. AMG can easily be developed without it, but this is recommended
only after acquiring an understanding of the role of the slack variable in each
process,

3.2 Coarsenin ars evel selection and interpolation prescription

There are two general principles guiding the coarsening process of AMG:
Principle A, The total relative complexity (that is, the =ratio of the

total over [ of the number of nonzero Egj to the number of nonzero ng)

must be suitably bounded.

Principle B, Interpolation to any fine level variable must include coarse

level variables on which it strongly depends.
Principle A is obvious and is concerned with the cost of a multigrid cycle.
Principle B, which aims at obtaining good convergence rates, is derived from the
fact that point relaxation smooths only along strong dependencies.

Although these loosely stated principles lead to many different coarsening
techniques, the following one emerged as the most effective of those thus far
analyzed.

Ge will denote the set of level £ variables or unknowns. (Alternately, one

- £
may think in terms of gridpoints.) Principle B above assumes G to be a subset
£-1 £-1

of 6{-1. The interpolation from GZ to G is denoted by I£ so that the level £
problem will be given by L£U£=f€where L2 = (Iﬁ—l)T LE_1 Iﬁ_l and f2 = (111;:_1)'1.(#-1

- Ll)'“1 uz-l). 1 <2 <M, and L° t°=£° is the given (finest level) problem.

_12_



The objectives of the coarsening process described below is to determine M, Gl,

M 0 .1 M-
Gz, eess G and Ilf 12. cees IM 1. This is done recursively: the construction of

Gzand Iﬁ-l is based on the previously constructed matrix Lz—l, which for
simplicity is assumed to be zero row sum a#d positive—type. (See, however,
Section 3.4)

It is convenient to first describe the interpolation matrix i%_l . To this
end, let CF'—1 = Ge and Fz-l = Ge—l - Gz} (The superscript {-1will be omitted
whenever it is clear from context.) The interpolation presently used in AMG
depends on a prescribed integer p > 1 and is given by the following definition.

Fﬂ—l

Definition, For a given point i of let k ,....kp denote pi

distinct points of CZ that give the largest values of —Lik , where P, is

the minimum of p and the number of nonzeros Lik . Then p—point interpolation

I i-l is defined by n'e_l = ;g—l de, where uie-l = nf’ when i is a point of
Cf'—l and
p
Zi' L1 L
ik, "k,
(3.8) u§‘1= 3p'1 i i
f» 2-1
L,
=1ty

when i is a point of Fz-l.

Describing how AMG selects the coarse levels C=G£is not so simple. Since
this rather complex process is described in some detail in the appendix, the
discussibn here will be limited to a brief account of its motives, It is first
convenient to 1list the basic objectives of the coarse level selection process,
which depend on the following parameters: positive integers p,t and a positive
real a.

Objective 1. For each i in F, let P, be as above and letp be the

strength of the pﬁh strongest point on which it depends. Then there must

_13._.



exist P; points kl,kz,...,kpi in C on which i depends with strength at
least aB .
Objective 2, If there are at least t nonzeros in row i, then i must be in

C.

Objective 3, F should have as many points as is practically possible
without violating objectives 1 and 2.

Objective 4, The coarsest level, Gu, should have only a small number of
points,

Objective 1 is an attempt to supply each F point with strong dependence
on p C points. Using point relaxation as AMG presently does, it is clear from
earlier work with anisotropic operators (cf. [3; Sec.3.3]) that strong
dependence on to coarse grid points is necessary for the coarse grid to properly
correct the smooth error. There are compelling reasons why proper p-point
interpolation is sufficient for many problems. To see this, suppose that each
variable depends strongly on many other variables, with all these many
dependencies being comparably strong. (The case of many strong dependencies for
just some exceptional variables can be excluded, due to Objective 2).
Relaxation would then efficiently smooth along sll these dependencies, so a
small number of them would be enough to use in interpolation. This can more
easily be viewed in geometric framework, where each variable is associated with

a point in a low-dimensional space (the ‘underlying space’), and couplings

ng # 0 are between variables i and j associated with neighboring points. It is

easy to see then that the radius of smoothing (i.e., the wavelength of error
components efficiently reduced by relaxation) is the same as the radius of
strong couplings. Hence, even if the number of strong couplings per point is
large, just a few of them at a time are enough to interpolate a reasonable

approximation to the (relaxed) error. Actually, this consideration also

-14-



suggests a certain connection between the dimension d of the underlying space
and the number of points p that should be used in each interpolation. It seems
that p > d + 1 should be used if one wants to avoid large local jumps in values
of the interpolant,
This reasoning stems from early attempts to devise an AMG algorithm where
in place of Objective 1 was the condition that, for each F point, no less than a
fixed fraction 8 (e.g., §=0.5) of the total strength of its dependence must be on
Cpoints (i.e., - kEC Lik > 8 Lii for each i in F),. Convergence rates were very
attractive, but the complexity was quite unstable. The point is that the strong
dependence on C points should be based not on their total value but on how many
there are. This will maintain convergence yet stabilize complexity.
To see heuristically how complexity is controlled, assume again a geometric
background where jhh is the ’'radius’ of the operator on level h in that geometry

and khh is the radius of interpolation. Then on the next coarser level (say of

‘mesh size’ H), it follows from (2.7)-(2.8) that

(approximately).

(3.9)

2h h
£ k, *q

Jg2 g %

Hence, complexity is eventually (i.e., for much coarser grids) determined by kh'
not jh‘ If only p of the 'nearest’ neighbors are used in interpolation, then kh
is roughly fixed. If the ratio h/H is also approximately fixed, then (3.9)
implies that the radius of LH will eventually be bounded according to

T

(3.10) ig £ gon kpe

(In two dimensions, for example, keeping kh ;'1 by choosing p=3 yields H ~ YZ h

so that < 5. Though this bound is independent of h, numerical experiments

In

indicate that it is much too pessimistic. The reason is that locally the

-1 5._



coarsening is roughly in one direction, and in that direction H~ 2h, so (3.10)
yields jH £ 2.)

Objective 2 is important for controlling complexity since coarse grid
dependencies are created predominantly by F-to-F fine grid connections. It is
especially important that points like the slack variable that are more or less
global are kept for the coarse level,

The aims of Objectives 3 and 4 in terms of controlling complexity are
obvious. Objective 3 is presently achieved by examining the points of G in turn
and making them F points whenever the other objectives wounld not thereby be
violated. Objective 4 is achieved simply by prescribing when the coarsening
process is to be stopped.

A description of the coarsening process based on these objectives is given
in the appendix. It is presently based on sweeping over the points of G to
select C points that should contribute most to satisfying Objectives 1 and 2
for as many F points as possible. There are, however, several variations of
this process currently under study.

Another coarsening process is given in terms of a sequence of nonnegative

reals (so,el,...,eM).

Operator truncation: If L,, < ¢

for some j#i, then the value of Lij

should be set to zero and the diagonal adjusted to maintain zero row sum.

The purpose of operator truncation is again to control complexity.
£
However, the use of operator truncation can be dangerous. Unless € js tied to

£ )
the size of G , then slow convergence rates may result. For example, if L is
d dimensional

a discretization of a second-order/ partial differential operator, then the

/

9 -

truncation sequence should satisfy e <« O(NQ1 d). where N, is the number of
. . L . o L

points in G , Otherwise, the modified L will be an arbitrarily bad

o S 4
approximation to the original L in the smooth errer components, If 4 is

~-16-



unknown, then this criterion can be used safely with d=1.
3.3 C-FRelaxzation-

Another motivation for AMG is to view it as a sort of approximate
reduction-type algorithm, Briefly, suppose C and F could be arranged so that
all of the connections from any point in Fare necessarily in C, Then simply
relaxing on the F points alone guarantees that the residual error at each point
is zero, that is, the actual error is in the range of interpolation. This in
turn implies that a coarse grid correction based on the variational principle
(2.10) produces amn exact solution, Of course, the difficulty with this
reduction approach is that Objective 3 is not achieved. In fact, the complexity
principle is generally violated.

Nevertheless, this viewpoint motivates the concept of performing F point
:elaxation before the coarse grid correction step in AMG. But because the error
is no longer expected to lie in the range of interpolation, it is important to
smooth this error beforehand. This suggests the use of C-F relaxation which
resembles the concept of red-black ordering (cf., [8]): Gauss—Seidel relaxation
is first performed (via some ordering) on the C points with a subsequent sweep
(via some ordering) over the T points. This constitutes one C-F sweep, which is
the basis for relaxation in the current AMG.

Analogounsly to red-blck schemes, the C-F ordering is expected to be

suitable for parallel or vector processing, where simultaneous relaxation is

performed first on the C points and then on the F points.

3.4 Maintenance of positive—-type

£- £
In the above construction of G2 and IZ 1, with L then given by (2.7), it

was assumed that L £1 is symmetric, positive—type, and zero row sum. These

properties are assumed for Lo. but use of this construction recursively requires

that they hold for Ll, L2,.... LM—1 as well. So assuming they hold for Ll—l.

-17-



4
they will now be proved for L .
Theorem, Using ~ p—point interpolation (3.8), then the operator L
constructed according to (2.7) and (2.8) is symmetric, nonnegative-definite, and

zero row sum. For p=1, it is positive—type.

Proof, Letae be the vector associated with Gfa all of whose entries are

snity, O Z<M. By (3.8) it follows that If'l ol _ ot-1 . Hence, by (2.7) and

£-1 6£~1 Lot 0. Thus, zero row sums are maintained. The

because L = 0, then L

symmetry and semi-definiteness of LZ follow trivially from (2.7) and (2.8).

To prove the assertion for p=1, let éi denote the jth column of the
£-1 -1 eﬂ

'
identity matrix ié?for Ge and let Ej =1,

Note that

T T 1T, _
£ L -1 LZ—I IZ—I £ EK 1 LK 1 EZ 1

Lix e O e ) &% T E k
2-1 o-1
But with p=1 it follows that the vectors Ei and Ek have no nonzero entries in
2
common., Thus, L? is & sum of off-diagonal entries of L 1, all of which are

ik

nonnegative, and the theorem is proved.

It is generally possible to maintain positive—type only for p=1, so some
positive off-diagonal entries of L1,....LM are to be expected in gemneral.
However, this is not a real difficulty since these entries can never be very

large. Indeed, the above processes do not really require any of the matrices,

including Lo, to be positive—type. All that is needed is that the coefficients

Lij used in the p-point interpolation (3.8) do not change sign. Thus, it is

sufficient that the dominating dependencies are of the same sign, Operators that

satisfy this condition may be called essentially positive—type. For any
reasonable value of p, if L° is essentially positive—type, then so also will be
¢

L . In fact, any discretization of a second-order elliptic differential

cperator produces such an Lo. (Such operators can also be turned into strictly

-18-



positive-type by the addition of certain variables; cf., [2].) The results of
numerical experim&nts with AMG applied to such operators show the same

performance as for operators that are strictly positive—type.

4. Remarks on the General Case

4.1 Relaxation

For symmetric semi-definite matrices, point Gauss—Seidel relaxation
(preferably with C- F ordering) is probably the best choice without additional
information, Several oper;tors Lh should, however, require & ‘’distributive’
scheme [3; Sec. 3.4]. It may be advisable to use some form of ’'collective’
relaxation [3; Sec. 3.4] if it is known that Lh is derived from a system, that
is, if there is an wunderlying geometric set of points, each of which is
associated with a fixed number of variabies. Collective relaxation is still
point oriented, but it involves simultancously solving all the equations
associated with each point. For this purpose, it is necessary, of course, to
specify in advance what unknowns and what equations are associated with each
point,

4,2 Global Constraints

Many problems involve ‘global’ constraints, such as integral normalization
conditions where some mnorm of Uh is prescribed to uniguely determine the
solution., Even conditions which look like pointwise ones (e.g., prescribing the
origin in the geodetic problem) are actually global in the sense that the entire
solution is sensitive to it. The requirement that the slack variable vanish is
such a global condition, In any case," tﬁese conditions should not be
incorporated into relaxation since its objectives are merely local. In fact,
enforcing them may have adverse effects on local smoothing. They should be
enforced rather on the coarsest levels after making sure that their residﬁals
are properly transferred from the finmer levels.
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For this purpose, it is desirable that the AMG user specify which equations

represent global conditions.

4.3 Coarsening

For non-symmetric problems, prescription (2.8) is not necessarily the best.
Thus, the coarsening process should now determine both I;h and Iih. The main

objective of the coarsening process should generally be to calculate good
approximations to errors that satisfy (3.3). Without specific information, for
general Lh it is possible to defime strong dependence and base interpolation on

the rows of Lh as before, or, instead, the rows of Lh+LhT. Instead of the

adjoint of interpolation, residual weighting should be based on the rows of LhT.
Techniques of this type are currently being studied in connection with AMG.

Other possible strategies for treating general Lh incilude appeal to a
variational formulation if ome exists or use of the matrix transpose by forming
(implicitly or explicitly) LthT or LhTLh. These are also currently under
study.
4.4 Coarsening for a system

For systems that include q>1 variables per grid point (arising, e.g., from
discretization of a system of q differential equations), the matrix will
generally not even be essentially positive-type. Most often in such (and other)
situations, one can partition the vector of unknowns U° into q subvectors (each
with exactly one entry per grid point, i.e., each corresponding to the
discretization of one of the unknown functions), so that the principal submatrix
of L° corresponding to each subvector is essentially positive-type. In this
case, when relaxation slows down, so that (3;3) is satisfied, smoothing may

occur within each subvector. Interpolation can therefore be designed

accerdingly, provided the partition of subvectors has been given. This partition
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should be known at the origin of the problem since the variables of different
subvectors normally have different physical meaning.

In some more difficult cases, the given q unknowns at each geometrical
point must be tr;nsformed into a new set of q unknowns before smoothing can
occur within each subvector (see examples in Sec. 6.3). Such transformations
can be determined and applied autom(ticnlly by AMG, although they are not in the
current version,

Another possible approach for a system is to coarsen in terms of the given
geometric points; namely, to choose which grid points will appear, each one with
all its associated unknowns, on the coarse level. Objective 1 should then be
replaced by a more complex one which requires not only that any variable have
strong dependence on the coarse grid variables, but also that each linear
combination of the q variables at any point have such strong dependency.
Coarsening algorithm which incorporate such requirements are now under
development,

5. Numerical Results for PDE’s
This section reports on the results of several representative experiments
with AMG on matrices that arise in solving two—-dimensional partial differential

boundary value problems. For each example, the region is the unit square & =
[0,1]x[0,1), the boundary conditions are Dirichlet with zero data, and the
discretization is conventional central finite differences.

The examples include:
1. The diffusion problem

—(d1 ux)x - (dzuy)y = f

where the functions d1 and d2 were chosen as follows:
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a. (Strongly discontinuous)

103 0.25 ¢ x,y < 0.75

dl(x,y) = dz(x.y) =
) 1 otherwise
b. (Widely varying in direction and magnitude)

2
dl(x.y) - 103(x—y)

dz(x,y)=1+10331n (n xy)

c¢c. (Singularity)

_ _ 2 2
dl(x.y) = dz(x.y) =x" +y

d. (Anisotropic)

dl(x.y)se d2(x,y)§1 .

?
In all cases the usual 5-point (divergence-form) discretization was used.

2. The Laplacian plus a stromg cross—derivative term

-Au + g u f,
x

where

-2

I~

e 2,

The experiments were with the seven—point stencil given by

[ [
0 -(1+2) >
h 1 [ _ £ - £
LE— 5 (l+2) 4+¢ (1+2)
h
€ €
5 -(1+2) 0
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Thus,
0 =2 1
Ltzl - lz 2 6 -2
h 1 -2 0
and
h 1
L = —

The examples were run on a CYBER 720 with h = 1/32 using a 3-point
interpolation version of AMG incorporating V-cycling with two relaxation sweeps
per level (one each before and after coarse level correction). The convergence
factors, shown in Table 1, are asymptotic in the sense that the runs were
carried out until the per cycle rates stabilized. Thus, the rates are much
better for the first few cycles, which is more cycles than is usually needed in
practice.

There are several things to note about these results. First, the
asymptotic convergence factors are generally at most 0.25. In fact, the less
well-behaved the problem (i.e., the farther from a Poisson problem), the better
is this rate. Note that Problem 2 withe=-2.0 converges in one cycle. This is
because AMG recognizes it as a one dimensional problem for which multigrid is a
direct method.

The only exception seems to be Problem 2 with € > 1. The bad rates are due
not so much to the fact that this problem is far from positive type, but to the
fact that discretization here is rather bad: it shows no dependence in the
direction in which the differential operator has its main dependence (its only
dependence, in case € = 2). In fact, the slow convergence is for components for

which the discretization error is large and hence not much convergence is

desired anyway.
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Finally, each of the experiménts involved setup and per-cycle costs (in
floating point operations, or FOPS) that were both typically about 15 work units
(i.e., matrix mult@plies). These results are from an earlier research version
of AMG and both factors should be substantially reduced (probably by a factor of
2) by developing a more efficient AMG implementation. Nevertheless, this and
work with other larger problems verify the O(N) complexity of AMG. (The fact
that the cost and rate results in Table 1 are essentially independent of N was
verifio& by several experiments with h ranging from 1/16 to 1/128.) The relative
total complexity (defined im Sec. 3.2) will improve in more complex problems

(cf. Sec. 6.6).
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6. Geodetic Equations

6.1 General nonline ighted st squares

Geodetic adjnstient involves nonlinear least squares which is generally a

problem of minimizing a functional

2
(6.1) P(u) = X v, 8 {u)
over a vector space of unknowns n=(n1 ,u2 sess), where the 'k are prescribed
weights and each gk=0 represents an observation equation (which is assumed to be
approximately zero at the minimum of P). Assuming that u approximately minimizes

P, then each gk(u) is small and yields the following simplification:

2
ch P . S s
(6.2) auiauj K k | ®k auiauj Bui Buj
dg, 98
k k
M2l Yk 3u, ou,
k i j

An approximate Newton correction, E, to u is then given by the solution of

(6.3) L°E = £°
where
oz Byl
ij k 'k ani auj
and
£ = - z w EE;
i k" %x3u

o . X . . s ..
Thus, L~ is symmetric and positive semi~definite near the minimum. Note that a

good stopping criteria for AMG is that the change in P per cycle is small

..24_



compared to P, becausevfnrther changes will be much smaller yet,
6.2 Geodetic least sguares

For a comprehensive description of geodetic problems, the reader 1is
referred to [10]: In the present paper, it is assumed that the geodetic
stations lie on & bounded plane. (This is no real loss of generality since the
solution process for the nonplanar geoid is almost identical. In any case, this
is assumed only to simplify the discussion since the numerical results are
actually for the nonplanar model.)

The basic unknowns are the latitude, X, and longitude, i of each
geodetic station . In addition, there is the artificial unknown, z2» called
orientation, which is the reference direction used in the angle measurements.
Note that the vector of nunknowns is u = (x,y,z)T. There are two types of

observations 8y involving stations i=i(k) and j=j(k), namely, directional

y. - Y
= i - -
(6.4) gk(u) arctan ;J—:f;— Zy -,

j i

where @ is the angle measured between station i and j from direction 2,521 (1)

and distance

(6.5) sk(u) = rij - Sk,

where 6k is the distance measured between stations i and j and

2 2)1/2

r., = ((z, - x.)
J

+ -
ij i (v; yj)

The entries of L° inm (6.3) corresponding to directional observations are

given in terms of the quantities
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B & _ i

X 9% 2
(6.6) SR N T
ayi ayj r..2
- lJ
38
s
321

Notice that the x variables are strongly dependent on stations with relntively- “
similar latitudes (vertical dependence) while the y are on those with similar
longitudes (horizontal dependence). x has only weak horizontal and y has only
weak vertical dependencies. Moreover, there is no (direct) dependence between
distinct z variables.

The entries of L° for distance observations involve

99X, - X, r,.
i i ij

agk 38k Yi~y

=13
. . r,.
6.1 Y1 3V ij
3
L
%1
Notice that the geometric reltionships are now reversed: the vertical

dependencies for x and the horizontal dependencies for y are weak.

The linearized equation (6.3) can be written in block form as

T T T T

xT xyT xz x xTF
(6.8) xT wT yz7T vy | =] ¥TF
zx¥ zyT 27T z zTF

vhere entries of X, Y and Z are given in (6.6) and (6.7). Thus,

X /x
(6.9) L° Y 'y
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By virtue of (6.6) and (6.7), XXT and YYT are positive—type and zero row sum,
ZZT contains only zero and ones, and ZTi is a diagonal matrix whose diagonal
entries are just th; total number of observations in which each orientation
appears,

Note that (6.8) contains no artificial constraints such as the
specifications of a particular station as the origin., Thus, U in this model
problem is determined at most up to origin shifts and rotations. This
singularity is no difficulty, however, since such constraints can be satisfied
after the approximation has been computed. Inclusion of these constraints in L°
would, in fact, cause AMG to introduce a slack variable and impose the
constraints only at convergence. This wounld be done implicitly by performing
(3.7).

Since L° itself is not positive—type, AMG must be modified to apply here.
It is first useful to consider the following examples.

6.3 Simple examples

In the following examples, it is assumed that the stations (approximately)

coincide with the nodes of a uniform grid in the plane and that v, = 1. Each

example is characterized by the specific type of observation performed over all

of its stations.

a. Distance to 8 nearest neighbors: The equations (6.8) turn out to be
the same as those arising in the simplest central finite difference

discretization of the differential System

- - - S\
3311 2322 43182 X ' £

-43,3, -23), -33,, y/ £

where 81 denotes differentiation in the horizontal direction, 82 vertical,

ajj =8j8j and f) are some functions. It is easy to see that this system is
elliptic and that lexicographically ordered Gauss-Seidel has a multigrid

smoothing rate of 0.53. Thus, one would expect AMG in" this case to converge
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at a rate similar to that for conventional multigrid.
b. Distances to 4 nearest mneighbors: The equations (6.8) are now

equivalent to the discretization of the differential operator

- 11 0

0 —322
which is semi-elliptic. Coarsening can, therefore, be donme within each variable
x and y individually, with x being coarsened horizontally and y vertically. The
lexicographic Gauss—Seidel smoothing rate in this semicoarsening process is then
0.45 (see [3; Sec. 3.3 1).

C. Distance to 4 diagonal neighbors: The equations (6.8) are as those
that arise in discretizing

\
—23;)  -29y, -43; 9,

-43, 3, -23;; 23,

This is again semi-elliptic, but semicoarsening individually in x and y as in
the previous example would now fail, since it is in terms of other variables
(x+y and x-y) that we now have commections in only one preferred direction.
Although such degeneracies are perhaps unlikely to happen in a real geodetic
problem, a robust algorithm must take them jinto account, since a local tendency
toward such degeneracy may occasionally appear.
6.4 Numerical results: a scalar case

The tests reported in the following sections were based on a data set
supplied by Dr. Alan Pope of the Nationmal Ggodetic Survey. It represents a
latitude-longitude adjustment problem for 250 stations and includes 1941
observations on 250 latitude, 250 longitude, and 324 orientation unknowns. As

before, all runs were made on a Cyber 720 using two relaxations per level and
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3-point interpolation.

These experiments are designed to seperate the two main difficulties
associated with muléigrid solution of the geodetic problem: the very unorganized
grid structure and the fact that it is a system of three unknowns (x, y, and z).
The 1latter difficulty is not the essential one since various non—scalnf systems
have been previously solved by multigrid processes. On the other hand, the
unorganized nature of the geodetic grids is one of the main reasons AMG was
conceived. The first test isolates this feature by focusing on a related scalar
problem, (Such problems actually arise in geodetic contexts, such as elevation
adjustment, and are very common in finite element discretizations.) To expedite

the effort, this test was developed as a single variable version of (6.8),

namely,

(6.9) xx! z = xT F,

which can be thought of as a latitude adjustment problem, where the longitudes y
and orientations z are given. For this problem, AMG achieved an asymptotic per-
cycle convergencefactor of 0.22 and a total relative complexity (Section 3.2) of

3.5. This is similar to the results reported in Section §.

6.5 Numerical results: two unknown functions

The next test included the two unknown functions x and y, with orientation

omitted, which is represented by the system

AN /
xxT 3yt /s XIF
(6.10) = .
1o SHER LI \‘\YTF

There are several versions of AMG that can be adopted for this system (cf.,

Section 4.4), but acceptable results have already been achieved for a simplified
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process based on viewing (6.10) as a point-oriented block system. For this
process, coarsening is based on taking the x-y pairs associated with each
geometric point (or station) and making decisions based on the dependence
between these pairs. In the version tested, point i was judged to be stromgly
dependent on point j if some linear combination of the associated x-y pairs
exhibited strong dependence. Note that this can be easily decided by computing,

say, the maximum row sum norm of A;i Aij » where

are the terms in the equations for point i involving points i and j. This
process also incorporates simultaneous relaxation where each x-y pair is in turn
changed in order that both equations at the associated point are satisfied.
Because the convergence rates were somewhat degraded over the scalar case, an
F-cycle (cf., [4]) version of AMG was used, yielding an asymptotic per—cyle
convergence factor of 0.36 and atotal relative complexity of 3.7.

These results can be much improved with the introduction of a fully
reliable coarsening process. More specifically, coarsening should ensure for
each Fpoint i that every possible rotation on the pair (xi,yi) will have two or
three strong dependencies on( points. (The 3-point interpolation process used
thus far does not generally supply that many strong dependencies because many of
the Aij matrices are actually singular., See example b and ¢ in Section 6.3.) To
test this claim, the same run was made except with 5-point interpolation. Again,
this will not guarantee that the objective here is reached, but for the small
model problem it should be close~—and it requires no additional programming. The
asymptotic per-cycle convergence rate was 0.10 with a total relative complexity

of 4.6. Thus, though the waste in this expiditious test is evident in the
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increased complexity, the rate appears to support the potential of the new

approach.

6.6 Comments on complexity

Total relative complexity is the total complexity (i.e., number of nonzero
coefficients) of the matrices on all levels relative to that of L°. This gives
a measure of the cost of a V-cycle but not an F-cycle, so the results of the
previous section must be considered with this in mind. However, these results
are only preliminary with much room for improvement, so they should not in any
case be taken too seriously.

By geometrical arguments (cf. Section 3.2), the complexity per station of
the coarse 1levels for large problems is essentially only dependent on the
complexity per station of interpolation, not on L°. Hence, the total relative
complexity would be smaller accordingly as the complexity per station of L° is
larger. Since the complexity per station of the North American geodetic problem
is roughly four times that of the present model, the total relative

complexity for this problem should be substantially smaller than the present

results.

6.7 Further research for geodetic equations

Following is a list of topics for further research that are relevant to
geodetic computations:

a. Igverses. For some applications, it is desired to have the full
inverse of the matrix L°. Since this inverse is dense, for large geodetic
problems there is simply too much data to be répresented. let alone computed, by
conventional methods. There are, however, properties of this data that allow
for multi-level representation and computation. Specifically, the entries of

this inverse representing couplings between two stations become smooth functions
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as the distance between the stations increases, so they can be represented on

coarser levels; the greater the distance is, the coarser the representation can-
be. Thus, only conplin;s between neighboring stations need be represented on the

finest 1level. Moreover, such a representation for the inverse of L° can be

computed inexpensively by recursively using a similar representation for the

inverse of L1. The Full Approximation Scheme (FAS; cf., [4; Sec. 5] or [3; Sec.

81) version of multi-level processing should be used for these purposes.

b. Partial inverses. A further very substantial savings in computer time
and storage camn be obtained if only a relatively few entries of the inverse of
L° are requested. This follows from observing that only coarse level couplings
need be computed for regions that are sufficiently far from the regions that are
coupled by these requested entries.

¢c. Geodetic updates. Occasionally, some changes in the data of a geodetic
problem may arise from new measurements. Finding the influence of such changes
on the computed solution would be very inexpensive if the multi-level structure
were preserved since this could be accomplished by one multi-level cycle, in
which relaxation on each level would be confined to a neighborhood of the
changed data. (The geometric size of this neighborhood is larger for coarser
levels, but the number of relaxed stations on each 1level remains fixed and
rather small.)

d. The nonlinear geodetic problem. The above tests were made on a
linearized version of the geodetic problem since that was the version supplied.
In order to directly treat the nonlinear problem, the only needed programming
change is in calculating the residuals f? (see (6.3)): the values of 8y and its
partial derivatives should be calculated directly from their nonlinear
expressions (6.4)-(6.5), at least once per cycle. Since a good initial

approximation is furnished for the geodetic problem, one may then be able to
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solve the nonlinear problem in basically the same amount of wqu as in solving
one linearized problem. When the initial approximation is not sufficiently good,
one can still achieve the same efficiency by incorporating, in conjunction with
FAS, transfer of the nonlinear relations to the coarse levels.

e. Storage management. The North American Geodetic Survey includes some

6 observations and 2.5 x 105 stations, The problem is therefore too

6 x 10
large to be stored, let alone solved, in core memory. The multi-level approach
offers very efficient storage management possibilities., (See Section 7.g.)

f. Using geometric infornutiqn. How much more efficiency the use of

geometric information (see Section 7.b) can produce in solving geodetic problems

is a question deserving further study.

7. Further research (general

a, Algorithmic variations. Several variations on the basic AMG algorithm
may lead to greater efficiency, including approaches for achieving the
coarsening objectives of Section 3.2 that are more systematic. Their increase
in expense must, of course, be measured against improvement in performance.
Other variations concern the objectives, such as the modification of Objective 1
to allow ‘'twice removed’' «connection strengths, that is, points that depend
strongly on points that in turn depend stromgly on ¢ points.

b. Use of geometric information. AMG presently makes no use of geometric
information. Many applications can, however, provide simple but important
geometric features of the problem, such as the relationship between strong
dependence and geometric distance, or the relative geometric positions of the
unknowns. The latter would be especially useful for achieving higher order
interpolation accuracy.

c. General nonlinear problems. Multigrid solvers can usually be applied

directly to a mnonlinear problem via FAS, solving it as fast as solving the
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corresponding linearized problem, without requiring any (global) 1linearizationm.
There are, however, certain questions to be investigated concerning the
application of this scheme in the AMG-type setting, where no grids nor
differential origins are given and where gemerality is the objective: A linear
problem is specified by a matrix, but how does one generally specify the
nonlinear problem?, How should FAS be combined with variational coarsening?,
etc.

d. Sequence of problems. For time dependent problems or continuation
processes, for example, conventional multigrid can often take advantage of the
nature of the solution changes beyond that of other methbds (cf., [3; Sec. 15]).
This is true of AMG as well., In addition, the AMG coarsening can remain fixed
for many problems in the sequence and should be updated only when slower
convergence rates are sensed.

e. Design aid. With careful attention to input/ountput features, a
version of AMG could be developed as a design tool. By providing an analysis of
the strengths of dependence, AMG could act as a guide in the development of
conventional multigrid applications.

f. Storage—efficient algorithms, For problems too large to be processed
in core memory, the multi-level approach offers very efficient algorithms
because its finer—-level processes are completely local; its global processes are
performed only on coarse grids, fitting easily into limited storage (cf., [3;

Sec. 8.71).
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Total Relative Asymptotic Factor

Problem € Complexity Per Cycle
1a, —— 3.99 0.23
1b. —— 3.67 0.06
lc. - 4.04 0.25
id. 1.0 3.89 0.22
1d. 0.5 3.42 0.15
1d. 0.1 3.72 0.09
1d. 0.01 3.42 0.08
1d. 2.0 3.42 0.14
1d. 10.0 3.69 0.10
14. 100.0 3.42 0.08
2. 0.5 3.48 0.25
2. 1.0 3.41 0.30
2. 1.5 3.43 0.46
2. 2.0 3.42 0.73
2. -0.5 3.41 0.17
2. -1.0 2.59 0.19
2, -1.5 3.32 0.10
2. -2.0 1.74 0.00

TABLE 1
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APPENDIX

The application of AMG to the problem
L% = £°, L°: gV » g
can be divided into two separate processes: coarsening (determination of
the coarse grid points and prescription of the grid transfer operators)
and solution by multigrid cycling. An outline of the coarsening algorithm
is as follows:

1. Set 20 and G'+{1,2,...,n_}.

L ., ) 2
2. Split G  into two setsC” and F~, where Czis the set of coarse

grid points, and set G2+1+C£.

. L 2+1 3 T
3. Determine Il+l agd set Il 4—(IQ+1)
L+l _ +1_2_2
4. Compute L = IQ L IQ+1.
2+1 \ . .
5. If G has few enough points to permit quick solution of the

problem, set M«2+l and stop. Otherwise, set 2+%+l and go to 2.
Steps 2 and 3 are closely related; a more detailed description of them is the
subject of this appendix.

Four parameters are used in this algorithm: nl(zp), nz(z.max{nl,l}),
g>0, and a<l. The specific form that objective 1 of Section 3.2 takes here
is: for each point i in Flwith at least n, neighbors (j is a neighbor if
i in Lij # 0) between ny and n, of these neighbors must be in CQ, and the
total strength of dependence of i on these neighbors must be at least

) . . .
1-¢L times the total strength of dependence of i on its n, strongest

ii
neighbors. This set of neighbors is used to define interpolation to point i,
L A
and is used in choosing the sets C*and F~. The specific form that objective
2 takes is in terms of o which limits the total number of connections that

any point in.Fecan have. Thus, if a point i has more than a times the

L .
average number of connections, it is forced to be a C” point.
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The coarse grid point selection algorithm itself can be broken down
into three parts: determination of the interpolation point sets for each
point, assignment of the initial interpolation values for each point, and
the actual CK point selection. The interpolation values are assigned to a
point on the basis of its inclusion in the interpolation sets of other
points, and points with high interpolation values are chosen to be coarse
grid points.

In order to explain this algorithm, let the neighbors of point i on

a grid be defined by

N(i) = {j: j#i  and Lij # 0}.

The number of elements in a set ScG2 will be denoted by |S|. Then the
determination of the interpolation set for a point i actually consists of
finding a collection of subsets of N(i), denoted by B(i), so that if i is
in Fz, then one of these subsets must be in Cz. B(i) can be characterized
by two disjoint subsets of N(i), denoted by Sl(i) and Sz(i), and a number

p3(i), so that
B(i) = {5, (1)Us,(i): S5(1) & 8,(1) and |S3(i)[ = py(D)}.

This can be determined as follows:
1) If |[N()| <n,, then let S, (i) = N(i), §,(1) = @, p,(i) = 0,
py(1) = 0, and p(4) = p, (1) = N1 ].

2) 1If ]N(i)‘.i n then let

2’
2
= v H [+ i = .
sy max{jes ‘Lij’ SEN(i) and |S| n2},
Sy . L Y
B(i) = {SeN(i); S, - .z |L..|<e - |L,.|
1 jesS’ 1] ii



p(1) = min |S];
SEB (1)

B(i) = {SeB(i): |S] = p(D)};

5,(1) = Sil(i)s, P () = [8,(D];
5,(1) =(Sg3(i) s)- 5,(1);

p,(1) = |s,(1)[; and

py(d) = p(1) - p,(1).

The second process is the assignment of interpolation values to all
points i. This is based on the importance of i for possible use in the
interpolation of all other points and is defined as follows:

. ) y p,(3)
" - 1y P
j=iesl(j) p(3) j=i532(j) p(j)pz(j)

In additiomn, if

w | za> I IO,
jeG

‘set v(i) « v
max

where v is set high enough so that Vv > v(i) for all i.
max max -

The third process is Cz selection giben by

1. Set Cz + @ and FZ “« GQ .

2. 1f v(i)=0 for all i not in Cz, stop. Otherwise, pick i so that
v(i) is a maximum. (Note: In order to avoid searches, points

are organized in doubly linked lists, each list containing
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points with a small range of values. A pointer is kept pointing
to one end of the list to which insertions are made as values
are changed. The choice of the point with the highest value of
v(i) is actually made by choosing the first element of the
nonempty list corresponding to the highest range of values.)

For each jeSl(i), set v(j) « v(j) —~5f%y

P3(q

For each jeS,(1), set v(§) « v(j) - p()-p, 1)

For each j such that ieSl(j):

set Sl(j) < Sl(j) - {i};

if p(j) > 1, then:

for all j,eS,(3), set v(j,) « v(j,) + p(;)—l - p<§>

. . . 1 1, P
and for all JZESZ(J), set v(jz) + V(Jz) + (p(j)-l - p(j)) .pz(j) :

set p(j) <« p(j) - 1.

For each j such that iesz(j):
if pa(3) = 1, set 5,(5) = @

otherwise, set Sz(j) <« Sz(j) - {i};

. * ] j 1 1
for all 3,e8,(3), set v(i,) « v(i,) + vy - 55y 3

. : . : Py(1)-1 Py (3)
for all 3,68,(3), set v(ip) «vQ) GO FINe, (DD ~ 51 5,1

.
’

set p(j) « p(j)-1, pz(j) « pz(j)—l, p3(j) « p3(j)-1;

if p3(j) = 0, set pz(j) < 0.
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7. Set Cz “« CK\J{i}, FZ « FZ - {i}, and go to 2.

CZ and Fﬂ a;e now defined. Thus, for every i in Fz, there is a set
S(i) in Cﬂ which can be used to interpolate to point i. However, this set
need not be unique. Thus, to specify interpolation, pick the subset
S(i) of CghaB(i) on which i has the greatest total strength of dependence;
£+1

the interpolation matrix Iﬁ+l is defined with entries b?j’ ieG, jeG + ,

so that for ieCe,

L s
Pis T g

and for ieFe,
L./ ) L if jeS(4i)

0 if ¢S (1)





