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A CUBED SPHERE GRAVITY MODEL FOR FAST ORBIT
PROPAGATION

Brandon A. Jones, George H. Born∗, and Gregory Beylkin†

The cubed sphere model of the gravity field maps the primary body to the surface
of a segmented cube, with a basis defined on the cube surface for interpolation pur-
poses. As a result, the model decreases orbit propagation time and provides a lo-
calized gravity model. This paper provides a brief description of the cubed sphere
model, which is currently derived from the spherical harmonics. Early tests of the
integration constant did not meet requirements, thus the model was reconfigured
to improve accuracy. A detailed characterization of the model was then performed
to profile agreement with the base model. The new model closely approximates
the spherical harmonics with orbits deviating by a fraction of a millimeter at or
above feasible Earth-centered altitudes.

INTRODUCTION

Conceptually, a sphere is a rather basic geometrical object. It is simply the collection of all points
in a three dimensional space that are some distance r from the center. However, defining a basis
on the surface of the sphere has not proven as simple. The method most commonly used for such
objects is the spherical harmonics. In the case of geopotential, the model is

U (r, φ, λ) =
µ

r

(
1 +

∞∑
n=2

n∑
m=0

(
R

r

)n
Pn,m [sinφ] (Cn,m cos (mλ) + Sn,m sin (mλ))

)
(1)

where ∇U is the resulting gravitational acceleration. The gravity model itself is described by the
coefficients Cn,m and Sn,m.

When using the spherical harmonics, model accuracy improves by increasing the model degree
and order. Unfortunately, an increase in the degree and order of the model by a factor of 10 results in
computation time increasing by a factor of 100.1 Interpolation models have been developed to make
evaluation faster. These models have ranged from preserving the spherical coordinate system,2, 3

to models that more drastically reformulate the evaluation of the gravity field.4, 5 As demand for
improved gravity model accuracy increases, so do the computational resources required for model
evaluation. Additionally, orbits about bodies with irregular mass distributions, such as the moon,
require a high degree model to properly propagate an orbit.6

With the spherical harmonics, deviations from the sphere at a single point are modeled by accu-
mulating the deviation generated by panels defined over the complete sphere. Hence each term is
part of a global model. Unfortunately, the spherical harmonics model is unable to meet the demands
for regional representations.7 Several alternative methods have been explored to localize the gravity
field for these scientific applications.8, 9
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A new model, the cubed sphere, was developed to localize the gravity field and decrease the
model evaluation time.1 At its core, the cubed sphere is an interpolation model that relies on a
localized basis defined on the surface of a segmented cube. This cube is mapped to a sphere to
represent spherical objects. This paper explores applications of this cubed sphere model to orbit
propagation, particularly how it compares to the spherical harmonics model solutions.

THE CUBED SPHERE MODEL

Originally proposed by Beylkin and Cramer,1 the cubed sphere model defines a new method to
compute geopotential and acceleration. Essentially, the sphere is mapped to a cube with a new
coordinate system defined on each side. Each cube panel is segmented by a uniform grid and
interpolation is performed on the face to find the acceleration at that point. Multiple cubes are
nested within each other and interpolation is performed between adjacent cubes to account for the
acceleration variation in the radial direction. Hence, the model is described as a cubed sphere and
is conceptualized by Figure 1. A grid spacing scheme is established with values for acceleration
precomputed at intersections of the grid lines. Basis splines, or B-splines, were selected as the basis
on each face of the cube. The next section describes the cubed sphere model in detail.

Figure 1. Illustration of the cubed sphere

The Model

The cubed sphere model may be used to approximate any number of elements defined on a pri-
mary body. For example, it can approximate each component of acceleration, or the gravity poten-
tial. The accelerations are not directly derived from potential, but stored as a separate parameter.
Thus, in order for a model to provide both potential and three components of acceleration, four
parameters must be stored at each point for future interpolation. In the following sections, any
reference to modeling the gravity potential may also be used to model acceleration when the appro-
priate adjustments are made. Although the cubed sphere model is described in the literature, a more
detailed description is included here to improve clarity. The design of the model described in this
section was originally the work of Beylkin and Cramer.1

The cubed sphere model is currently derived from a given model, hereafter called the base model.
Although other models such as a polyhedron or mascon may be utilized, currently the spherical har-
monic model is used. The first four terms of the spherical harmonic expansion, i.e. the two-body
term, J2, the (∗)2,1, and (∗)2,2 terms are not represented by the cubed sphere model. Given the
decreasing contribution of the higher order terms to the global gravity field, these lower order terms
are not included in the cubed sphere model to prevent loss of accuracy due to machine precision.
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The geopotential values computed by the remaining base model are then used to define the ba-
sis functions on the surface of the cube. Although other formulations are possible, B-splines are
currently used. The method for deriving the cubed sphere will now be defined.

A major property of the cubed sphere model that must be defined is the grid size, N . Similar to
the degree and order of the spherical harmonic model, the grid size is a measure of model fidelity
and defines the density of the grid on each cube panel. For a given altitude, the values of latitude
and longitude are segmented such that

θ = 2πx, φ = 2πy (2)

where x and y are discrete values in the range [0, 1) with spacing N−1. It may not be readily
apparent why the latitude, φ, is in the range [0, 2π), but this will be understood in a moment.

Latitude and longitude have been mapped to a two dimensional grid specified by x and y to solve
for the B-spline interpolation scheme. As described in the appendix, the interpolation coefficients
are easily derived in the Fourier domain for a periodic, two dimensional plane. If the grid variables x
and y are 1-periodic, then the two-dimensional FFT algorithm may be used. The values of potential
at grid intersection points are used as data values. Hence, given a cube is comprised of six planes,
the FFT algorithm provides a simplified method for representing the potential on the surface of a
cube.

If φ only varies from −π/2 to π/2, or 0 to π, then y is not 1-periodic. Thus, the formulation of
the Earth’s geopotential must be duplicated to complete the period. The mathematical formulation
of the new geopotential, Up, is then

Up(r, φ, θ) =

{
U(r, φ, θ) if 0 ≤ φ < φ,

U(r, 2π − φ, θ + π) if π ≤ φ < 2π
(3)

and φ is now a value in the range [0, 2π) and 2π-periodic. Thus, y is now 1-periodic and the
FFT algorithm is used to generate the B-spline interpolation coefficients. Note the doubling of the
geopotential model is only used to generate these coefficients.

To prevent grid distortion given the ambiguity of longitude at the poles, the Earth is rotated so
that the poles lie along the equator. This is equivalent to the transverse mercator map projection. A
second x-y plane is generated after this rotation, with the FFT algorithm applied and a second set of
B-spline coefficients determined. This rotation is performed in the formulation of the base model.

B-spline coefficients have been defined over the flat surface of the two x-y grids. The grids
are then broken into appropriate segments to generate the faces of a cube. Each face, or panel,
of the cube has a new x-y grid with axes defined over the range [−1, 1]. Four panels along the
middle latitudes are selected from the first plane, while the two remaining panels along the poles
are selected from the second plane. Grid spacing is preserved along the face of the cube, however
the new panels are a quarter of the size. Thus, the size of the grid on each panel is N /4 by N /4.
This property is used in the naming convention defined for a given model. A CS-X model is a
cubed sphere model where X corresponds to the grid size on a cube face , or N/4. Finally, the
geopotential model for the given shell has now been defined and is represented as a cube.

Additionally, a user specified number of nested, concentric shells is defined for interpolation in
the radial direction. Shell spacing is determined by defining a set number of points (hj) equally
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spaced in the interval [0, 1]. Shell locations are then

R

rj
= 1− h2

j (4)

where rj is the radial distance of the shell. These ratios, which represent a distance above the
planet’s surface in the range (0, 1], define shell locations. As the ratio approaches zero, the orbit
radius approaches infinity. Shell density increases as altitude decreases, corresponding to the inverse
square relationship between geopotential and radius. The final shell at a radius of infinity is not
computed. The model assumes eventual decay to zero of the spherical harmonic terms, thus the
two-body equation will govern satellite dynamics.

These primary shells are modeled with each consisting of subshells for polynomial interpolation
of a prescribed degree in the radial direction. For a fifth degree interpolation scheme, six subshells
are required. The spacing between subshells is mapped to the range [−1, 1] where zero corresponds
to the midpoint between primary shells. The subshells are then located at the Chebyshev nodes
based on the degree of the polynomial. Chebyshev nodes were selected to minimize interpolation
error due to node selection. Each primary and subshell is independent of all others, thus there is
no coupling in model generation. B-spline coefficients for each shell are generated as previously
described using the applicable altitude for the evaluation of Eq. 3. A total of (l + 1) ×M shells
are computed where l is the degree of the interpolating polynomial and M is the number of primary
shells. It is important to note the mapping to the cube is simply used for data storage and solving
for the spline coefficients. All parameters described by the model, more specifically components of
acceleration, are still represented in the spherical coordinate system. The cube provides a uniform
grid for B-spline coefficient determination and a data structure for faster computation.

Implementation of the cubed sphere model is rather straightforward. The point of interest is
mapped to the cube, and interpolation along the face and between shells is performed to determine
the higher degree acceleration. Lower degree accelerations are computed using the spherical har-
monic coefficients stored in the model. The conversion from spherical (φ, λ) to cube coordinates
(x, y, n) is summarized in Table 1, and was adapted from Beylkin and Cramer.1 For the cube co-
ordinates, n refers to the face of the cube. The first four panels represent the sphere at the middle
latitudes between -45◦ and 45◦, while panels 5 and 6 correspond to the polar regions.

Table 1 Spherical to rectangular coordinates conversion. Note γ = cosφ sin θ, ω =
tanφ/ cos θ, and α = 4/π.

Face Angle Ranges X-coordinate Y-coordinate

1 −π ≤ θ < −π/2, −π/4 ≤ φ ≤ π/4 αθ + 3 αφ
2 −π/2 ≤ θ < 0, −π/4 ≤ φ ≤ π/4 αθ + 1 αφ
3 0 ≤ θ < π/2, −π/4 ≤ φ ≤ π/4 αθ − 1 αφ
4 π/2 ≤ θ < π, −π/4 ≤ φ ≤ π/4 αθ − 3 αφ

5 |γ| ≤ 1, |ω| ≥ 1, φ > 0 α tan−1(ω)± 2 α sin−1(γ)
6 |γ| ≤ 1, |ω| ≥ 1, φ < 0 α tan−1(ω)± 2 α sin−1(γ)
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Model Configuration

Test software was written to evaluate the model at a user defined number of random points above
the primary body. For each point, the cubed sphere model is compared to the base model and theL∞
norm is evaluated. The maximum norm of all points is then used to characterize the accuracy of the
model. Tests utilized 105 random points, with any increases yielding similar results. The original
cubed sphere model differed from the spherical harmonics by as much as 10−9 m/sec2. Although
this value may appear rather small, the model was reconfigured and accuracy was improved to 10−11

m/sec2, and 10−14 m/sec2 for lower fidelity models. The main focus of this reconfiguration was to
improve model performance for higher fidelity models, i.e. equivalents to the 70x70 models and
those of higher degree and order. Full benefits of the reconfiguration will be demonstrated in the
section discussing the integration constant performance.

Table 2. Cubed Sphere Configuration

Property Before Current

Number of parameters estimated (P ) 3 4
B-spline degree (m) 11 11

Chebyshev polynomial degree (l) 5 11
Number of primary shells (M ) 13 13

Grid Density
(N ) for:

CS-30 / 20x20 80 120
CS-76 / 70x70 280 304

CS-162 / 150x150 600 648

Changes to the cubed sphere configuration made in the course of this research, along with other
major properties, are included in Table 2. Note the change in Chebyshev polynomial degree and
grid density did result in a file size increase. Additionally, the original model did not include the
estimate of the potential at a given point. Of course, these configuration parameters can be tailored
to a specific design based on orbit accuracy requirements and file size limitations. If the potential is
not required, the file size is reduced by almost 25%. Table 2 defines the base models for the CS-30,
CS-76, and CS-162 models used throughout this study. Other changes were made to the software
to improve computation speed and switch from the unnormalized to normalized formulation of the
associated Legendre functions in the base model. Finally, the model storage scheme of the B-
spline coefficients was altered to allow for loading of selected shells to reduce software memory
requirements and decrease initialization time.

The number of elements that must be stored in the model are computed using

Number of elements = 6P (l + 1)M
(
N

4
+m

)2

(5)

where the meaning of the terms are found in Table 2 or the notation section. Additionally, there is
some memory overhead associated with the file header. For the CS-30 model, this results in a 49
Mb file. Similarly, a 856 Mb file is required for a CS-162 model. However, the complete model is
not required for most applications. Since the model is localized, only the primary and secondary
shells required for a given orbit must be generated or loaded into memory.

5



Experimental results demonstrate the evaluation time of the cubed sphere model is slightly more
than the 20x20 spherical harmonics. As the model grid density is increased, corresponding to an
increase in model fidelity, evaluation time does not increase. The B-spline coefficients are organized
such that no search is necessary. If the degree of the interpolating functions remains constant for
each grid size, model evaluation time remains constant. Thus, speed-up factors compared to the
spherical harmonics increases with model fidelity.

COMPARISONS TO THE SPHERICAL HARMONICS MODEL

After the cubed sphere was fully developed, it was compared to the spherical harmonics model.
The GGM02C10 model was selected as both the base model of the cubed sphere and the basis of
comparison for the following tests. Evaluations included a comparison of the integration constant,
spatial comparisons of the models in the form of gravity anomaly plots, and finally the propagated
orbits themselves.

The TurboProp orbit integration package11 was used to minimize software development time.
This software provides integration tools implemented in C that are compatible with MATLAB.
Unreleased versions are also compatible with Python. The cubed sphere model, along with the nec-
essary interface code, was implemented within the TurboProp framework. However, the software
can be easily ported to other packages. For the following tests requiring orbit propagation, the Tur-
boProp Runge Kutta 7(8) integrator was used to simplify integrator setup with automated execution
for a variety of initial conditions. Other integrators were tested, including symplectic Runge Kutta
algorithms, but yielded similar results. The absolute integration tolerance was set to 10−12.

Orbits were propagated for 24 hours with a variety of initial conditions and states output every
20 seconds. The initial orbit altitude was varied between 100 and 1,000 km at 50 km intervals.
Model accuracy relative to the spherical harmonics decreases with reductions in altitude, however
most satellites orbit at or above 300 km. Thus, altitude specific results in the following sections are
provided at 300 km. The right ascension of the ascending node (Ω) ranged from 0◦ to 180◦ in 5◦

increments, while the inclination varied from and 0◦ to 85◦ in 2.5◦ intervals. All other orbit elements
were initially set to zero. The inclination was intentionally kept below 85◦ to avoid the singularity
at the poles in the classical formulation of the spherical harmonics. Thus, for each altitude, 1,295
orbits were tested. The Greenwich sidereal time was set to 0◦ at the epoch time, with an Earth
rotation rate of 360◦ per solar day. The planetary radius and gravitation parameter were set to the
appropriate value as determined by the base model. Each set of initial conditions was propagated
using the cubed sphere and the corresponding base model. The trajectories were differenced and
3D RMS differences were calculated and stored. Any reference to an orbit propagation “error” is
defined as the difference between the cubed sphere and the spherical harmonic model orbits. The
three models described in Table 2 were tested.

Integration (Jacobi) Constant Comparisons

A given geopotential model must satisfy the Laplace equation,

∇2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0 (6)

Unfortunately, there is no direct method to calculate the second derivatives of the cubed sphere.
Parameters could be added to the model to estimate these values, similar to the those modeling
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the geopotential and the gravity accelerations. However, this will drastically increase file size.
Additionally, finite differencing would only be an approximation.

Instead of testing the cubed sphere under the Laplace criterion, another technique using the
Jacobi-like integration constant,12

K =
~̇r · ~̇r

2
−
[µ
r
− U(~r, t)

]
− ~ω · (~r × ~̇r) (7)

is used. This constant assumes the geopotential is a time varying potential, which is valid due to
Earth rotation. Here, ~ω is the angular velocity of the primary body. For a valid gravity model and
a propagated orbit, K must remain constant over time, or K − K◦ equals zero. In practice, the
constant fluctuates due to the numerical integration process and errors in the estimate of the gravity
field.
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Figure 2 Changes in integration constant with the new CS-162 model configuration
for an orbit with an inclination of 15◦ and right ascension of 50◦ at a 300 km altitude.

As mentioned previously, the cubed sphere was reconfigured to improve accuracy. The prin-
ciple motivation for this alteration was improving the integration constant performance. Figure 2
illustrates the extent of the improvement. Previously, the cubed sphere integration constant was
consistently 1-3 orders of magnitude greater. This result would reduce the validity of the model for
applications requiring long term orbit propagation, thus the model was reconfigured. In some cases,
such as this example, the integration constant performs better than the spherical harmonics with the
new configuration.

Table 3. Fraction of runs where O(K-K◦) is less than the other model.

Model Cubed Sphere Spherical Harmonics

CS-30 0.024% 0.020%
CS-76 0.012% 0.008%
CS-162 0.264% 0.272%

A major concern when comparing the variations in the integration constant for the cubed sphere
and the spherical harmonics models is the relative magnitude of the fluctuations. In some cases, the
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magnitude of the variations of the cubed sphere were as much as an order of magnitude less than
the spherical harmonics, and vice versa. Table 3 provides the percentage of the 24,605 runs for each
model that exhibited this behavior. In most cases, the order of magnitude of the fluctuations was
the same. However, a small percentage of the tests yielded integration constant changes an order of
magnitude less for one model when compared to the other. In the case of the CS-162 model, where
the percentage of runs sharply increased, tests at altitudes at or below 250 km exhibited the larger
fluctuations.
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Figure 3 Comparison of the integration constant variations for the CS-30 model with
the spherical harmonics base model. Error bars are 1-σ.

In addition to the magnitude of the variations, any trends in the integration constant variations
should be considered. For a given orbit, the maximum of the absolute values of the fluctuations for
the cubed sphere and the spherical harmonics were differenced. Similarly, a linear fit was performed
on the integration constant change for a single orbit and the differences in the absolute values of the
slopes for the models were calculated. Statistics were assembled on the model performance for
each altitude, with the results provided in Figure 3 for the CS-30 model. In both cases, a negative
number means the cubed sphere model exhibited smaller variations or trends in the integration
constant. For the slope in the trend line, units are designated as mm2/sec2/hour. Since the units of
the integration constant are mm2/sec2, the mixture of seconds and hours is intended to preserve the
change of the integration constant over a given time period. For altitudes below 400 km, the mean
and median magnitude differences indicate the spherical harmonics model slightly outperforms the
cubed sphere. However, the average difference drops to nearly zero above 400 km. The maximum
and minimum differences remain consistent. Given the mean and median differences in the trend
line slope are around zero with 1-σ values within 0.01 mm2/sec2/hour, the two models typically
have the same long term trend.

Figure 4 illustrates the integration constant performance for the CS-76 model. Note the magnitude
and trend of the integration constant change is larger for the cubed sphere at lower altitudes, but
settles at around 300 km. The median is smaller than the mean at these lower altitudes, indicating a
relatively small number of tests increase the mean value. Again, the models closely agree for higher
altitudes, as indicated by the mean and median values with small error bars.
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Figure 4 Comparison of the integration constant variations for the CS-70 model with
the spherical harmonics base model. Error bars are 1-σ.
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Figure 5 Comparison of the integration constant variations for the CS-150 model
with the spherical harmonics base model. Error bars are 1-σ.
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Results for the CS-162 model are provided in Figure 5. Note some extreme values have been
truncated to improve visibility of performance statistics at higher altitudes. In the case of the dif-
ferences in the magnitude differences, the minimum values for the 100 and 150 km orbits are -3.39
and -1.51 mm2/sec2, respectively. The maximum values are 5.20 and 1.79 mm2/sec2. In the case
of the trend slope differences, the missing maximums are 0.44 and 0.14 mm2/sec2/hour. Like the
CS-76 model, differences between the cubed sphere and spherical harmonics models are greater at
lower altitudes. This trend remains consistent through the remaining tests, and is attributed to the
greater differences in the gravity anomalies at lower altitudes seen in the next section. In this case,
the differences in the models settles around 250 km.

Gravity Anomaly Comparisons

In this section, a spatial comparison of the differences in the modeled accelerations is provided.
The results are represented in gravity anomaly plots projected onto the surface of the Earth. The
acceleration vector was evaluated at a common altitude with latitude and longitude varied in 0.5◦ in-
tervals. The magnitude of the differences in the vector is then illustrated. Like the orbit propagation
tests, acceleration vectors were not computed at the poles to avoid the singularity in the spherical
harmonics model.
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Figure 6. CS-30 gravity anomalies at 300 km

The gravity anomalies for the CS-20 model at an altitude of 300 km are provided in Figure 6,
and demonstrate anomalies are less than 10−7 mGal. The cube grid is visible in the variations in
the anomalies, especially over the East Indies. The regions of peak variation correspond to regions
of high gravity fluctuations, as determined by the spherical harmonics model. For example, the
Himalayan mountain ranges and the East Indies.

The gravity anomalies for the CS-162 model at 300 km are found in Figure 7. The grid spacing is
still visible, but areas of peak variations are isolated to select regions. Like the previous cases, these
regions correspond to those with a generally large variation in the gravity field. The magnitude of
the anomalies is again on the order of 10−8 mGal, with the largest anomaly off of the coast of Haiti
at approximately 18◦ latitude and -67◦ longitude. Gravity anomalies for the CS-76 model are not
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Figure 7. CS-162 gravity anomalies at 300 km

included, but yielded similar results to the previous two models. The grid spacing was visible, but
the regions of higher differences were not as isolated as the CS-162 case.

Figure 8 Variations in gravity anomalies with altitude for 42 points on the Earth
using the CS-30, CS-76, and CS-162 models.

To illustrate gravity anomaly variations with altitude, Figure 8 illustrates the difference in gravity
anomalies for each of the models for altitudes up to geosynchronous orbit. Most of the forty points
depicted were randomly selected, although a couple of points were chosen to coincide with regions
of expectedly large anomalies, such as the Himalayan mountains. As expected, peak variations in
the cubed sphere model with respect to the spherical harmonics occur at lower altitudes. Addition-
ally, the largest anomalies occur for the higher fidelity models. At various altitudes, the differences
become discretized due to machine precision and the relatively low contribution the perturbations
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modeled by the cubed sphere have on the overall gravity acceleration.

For the CS-162 model, there is a region below 300 km and around 10−10 mGal where the varia-
tions are periodic. In this case, the difference is close to the machine precision and is not determined
by the grid spacing. Given the Chebyshev interpolation between shells, approximation error will
vary based on proximity to the nearby shells. Thus, as the altitude increases for this point in Figure
8, the error periodically increases and decreases.

Orbit Propagation Comparisons

A summary of the orbit propagation results are found in Figure 9 for the CS-30, CS-76, and CS-
162 cubed sphere models. These 3D RMS values include the state differences at all times and orbits,
independent of the orbit initial conditions. Orbit position and velocity differences are on the order
of fractions of a mm and mm/sec, respectively. The magnitude of the orbit propagation errors for
the three models converges at 200 km, and continues with a slight downward trend as orbit altitude
increases. Model performance improves with reduced fidelity at lower altitudes, which is consistent
with the gravity anomalies provided in Figure 8. Of course, these results can be adjusted by the
configuration of the cubed sphere. However, this demonstrates that very close agreement with the
base model may be achieved.
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Figure 9 Summary of the total 3D RMS orbit propagation differences for the CS-30,
CS-76 and CS-162 models at a given initial altitude.

Table 4. Average Speed-Up Factor for the Cubed Sphere Versus the Base Model

Cubed Sphere Model Spherical Harmonics Model Average Speed-Up Factor

CS-30 20x20 0.89
CS-76 70x70 7.13
CS-162 150x150 40.77

The ratio of the time required to propagate the orbit using the spherical harmonics and the cubed
sphere were also computed. The computation time used in these calculations only included the
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execution of the RK78 algorithm, and did not include file load times or software initialization. As
expected, the file load time for the cubed sphere is longer than the spherical harmonics, however
this can be mitigated through implementation. The speed-up factors are given in Table 4. After
the model reconfiguration, specifically the increase in the degree of the polynomial interpolation
between shells, the evaluation time of the model increased. Hence, the spherical harmonics is
slightly faster for models of degree 20 and lower. Thus, research into altering the configuration of
the lower fidelity models, specifically reducing the polynomial degree to reduce computation time,
is planned.
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Figure 10 Spatial distribution and histogram of the 3D RMS position differences for
propagated orbits initially at 300 km with the CS-162 model.
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Figure 11 Spatial distribution and histogram of the 3D RMS velocity differences for
propagated orbits initially at 300 km with the CS-162 model.

Orbit propagation performance specific to the CS-162 model at 300 km is illustrated in Figures
10 and 11. The minimum orbit 3D RMS was 5.71x10−5 mm, with a maximum of 0.0176 mm and
a median of 0.0033 mm. There does not appear to be any trends in the errors when looking at
their distribution based on inclination and Ω. The relatively large deviation at the Ω and inclination
combination of 130◦ and 37.5◦ is directly correlated with gravity anomalies in Figure 7. Specifically,
the orbit groundtrack intersects the large anomalies at approximately 28◦ latitude and 92◦ longitude
twice during the orbit, and once directly over the peak anomaly near Haiti. Other than this orbit,
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all others are within 0.015 mm of the spherical harmonics. The spatial distribution of the velocity
errors roughly corresponds to the position errors, with a minimum of 2.503x10−8 mm/sec and a
maximum of 2.037x10−5 mm/sec. The median 3D RMS velocity error was 3.80x10−6 mm/sec.
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Figure 12 Distribution of 3D RMS differences for propagated orbits initially at 300
km with the CS-30 model.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

3D RMS Position Error (10^-2 mm)

0

20

40

60

80

100

120

N
u
m
b
e
r
o
f
R
u
n
s

0.0 0.5 1.0 1.5 2.0 2.5

3D RMS Velocity Error (10^-5 mm/s)

0

20

40

60

80

100

120

N
u
m
b
e
r
o
f
R
u
n
s

Figure 13 Distribution of 3D RMS differences for propagated orbits initially at 300
km with the CS-76 model.

Histograms of the propagation state errors for the CS-30 and CS-76 models at 300 km are pro-
vided in Figures 12 and 13, respectively. Contour plots of these errors for the CS-30 and CS-76
model have not been included since results were similar to those seen for the CS-162 model. Any
accuracy differences in the results are visible in the histogram plots.

The CS-30 model position 3D RMS errors were within 0.02 mm, and as small as 4.701x10−5

mm. The median value was 0.0036 mm. The velocity errors had a median of 4.11x10−6 mm/sec,
and ranged between 2.993x10−8 and 2.266x10−5 mm/sec. These results were roughly the same as
those for the CS-162 model. Only twenty orbits had 3D RMS position errors above 0.0125 mm,
and 17 had velocity errors above 1.5x10−5 mm/sec.

Orbit propagation differences for the CS-76 model were roughly the same as those of the previous
two models. The minimum 3D RMS error was 3.246x10−5 mm, with a maximum of 0.0177 mm.
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The median was 0.0033 mm. The velocity errors were less than 2.042x10−5 mm/sec, with a median
of 3.788x10−6 mm/sec. The minimum error was 2.042x10−8 mm/sec.

CONCLUSIONS

Results demonstrate that the cubed sphere model closely approximates the base model, in this
case the spherical harmonics. Orbit propagation tests demonstrated model agreements on the order
of fractions of a millimeter, and position results are summarized in Table 5. The cubed sphere model
equivalent to a 150x150 spherical harmonics was over 40 times faster. However, the spherical
harmonics was slightly faster for the lower fidelity model. Future research will seek to further
customize the model to improve computation efficiency for these lower fidelity models.

Table 5. Cubed Sphere Position 3D RMS Performance at 300 km

Model Min (nm) Max (mm) Mean (mm) Median (mm)

CS-30 47.0 0.0200 0.0042 0.0031
CS-76 32.5 0.0177 0.0041 0.0033
CS-162 57.1 0.0176 0.0040 0.0033

The new configuration of the cubed sphere demonstrated model improvement. Fluctuations in the
integration constant were greatly reduced, with less than 1% of the orbits tested exhibiting fluctua-
tions that differed by more than an order of magnitude between the cubed sphere and the spherical
harmonics model. Changes in the integration constant, including the maximum fluctuation for a
given orbit and the long term trend, are consistent between the two models. For the higher fidelity
models, performance is reduced below 200 km. In some cases, the cubed sphere performs better
than the spherical harmonics, probably due to slight smoothing of the model when interpolating
between the nodes on the surface of the cube. Gravity anomalies were also reduced, and are now
within 10−6 mGal for all altitudes above the Earth, and less less than 10−7 mGal for altitudes at or
above 300 km.

Future research will include integrating the cubed sphere with the orbit determination process for
both Earth and Moon based missions. Even though second derivatives currently are not included
in the cubed sphere, integration with nonlinear filters, such as the unscented Kalman,13 is rather
straightforward.

Unfortunately, characterizations of moon based models were not included here. Due to the rel-
atively extreme gravity variations due to mass concentrations caused by asteroid impacts,6 initial
results demonstrated that additional tuning of the cubed sphere for lunar applications is required.
Additionally, lower altitude orbits are desirable at the moon. This is a small concern considering the
cubed sphere exhibited reduced performance below 300 km. However when the ratio of the primary
body radius to the orbit radius is considered, 300 km is equivalent to an 82 km altitude lunar orbit.
Some additional tuning is required to improve model performance at the minimum desired altitude
of 50 km at the moon.
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NOTATION

U geopotential
µ gravitational parameter (km3/sec2)

~r, r position vector and magnitude for the satellite (km)
φ geocentric latitude (rad)
λ longitude (rad)
R equatorial radius of the primary body
n spherical harmonics model degree
m spherical harmonics model order

Pn,m associated Legendre function of x with degree and order m and n
Cn,m cosine coefficient of spherical harmonics
Sn,m sine coefficient of spherical harmonics
N number of lines used to segment a plane
P number of cubed sphere parameters estimated
l Chebyshev polynomial degree

M number of primary shells in cubed sphere
Ω right ascension of the ascending node
i inclination
K Jacobi like integration constant
~ω primary body rotation vector

Bm B-spline of degree m
Lm interpolating spline of degree m
α B-spline interpolation coefficient

g(x) generic continuous function
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APPENDIX: BASIS SPLINES

A simple way to introduce basis splines (or B-splines) is to define them as

Bm(x) = (Bm−1 ∗B0)(x), (8)

where

B0(x) =

{
1, |x| ≤ 1

2

0, otherwise.
(9)

Thus, Bm is a piecewise polynomial of degree m. On taking the Fourier transform of B0,∫ +∞

−∞
B0(x)e−2πixξdx =

sinπξ
πξ

, (10)

we obtain ∫ +∞

∞
Bm(x)e−2πixξdx =

(
sinπξ
πξ

)m+1

. (11)

We only consider B-splines of odd degree and note that in such case the mth degree B-spline is
nonzero only in the interval [−(m + 1)/2, (m + 1)/2]. For our purposes, we use a periodized
version of B-splines on the interval [0, 1]. Subdividing [0, 1] into N = 2k subintervals, where
N ≥ m+ 1 (in practice N � m+ 1), we consider the basis of B-splines on this subdivision,

{Bm(Nx− j)}j=0,1,...,2k−1 .

Let us consider a function g(x) that may be written as

g(x) =
N−1∑
j=0

αjBm(Nx− j). (12)

Instead of using the basis of B-splines, we may also write the same function as

g(x) =
N−1∑
j=0

γjLm(Nx− j) (13)
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where Lm are interpolating splines, i.e.

Lm(l) = δl,0, (14)

where l is an integer. The definition of interpolating splines implies that the coefficients in Eq. 13
are, in fact, the values of the function g(x) on the lattice,

g(l/N) = γl. (15)

In our problem, we are given the values γl = g(l/N) and need to find the coefficients αj in Eq.
12. We have ∫ 1

0
Bm(Nx− j)e−2πixndx =

1
N
B̂m

( n
N

)
e−2πijn/N , (16)

and computing the Fourier coefficients of g in Eq. 12, we obtain

ĝn =

 1
N

N−1∑
j=0

αje
−2πijn/N

 B̂m

( n
N

)
= α̂nB̂m

( n
N

)
. (17)

Similarly, we compute the Fourier coefficients of g in terms of interpolating splines,

ĝn =

 1
N

N−1∑
j=0

γje
−2πijn/N

 L̂m

( n
N

)
= γ̂nL̂m

( n
N

)
. (18)

The B-splines and the interpolating splines are related by (see e.g. Chui14)

L̂m

( n
N

)
=
B̂m

(
n
N

)
a
(
n
N

) (19)

where
a(ω) =

∑
j∈Z

∣∣∣B̂m(ω + j)
∣∣∣2 . (20)

It may be shown that that a is a trigonometric polynomial (see e.g. Chui14)∑
j∈Z

∣∣∣B̂m(ω + j)
∣∣∣2 =

m∑
l=−m

B2m+1(l)e−2πilω, (21)

thus simplifying the evaluation of a. Finally, substituting Eq. 19 into Eq. 18, we get

ĝn = γ̂n
B̂m

(
n
N

)
a
(
n
N

) , (22)

which implies

α̂n =
γ̂n

a
(
n
N

) . (23)

In other words, applying the discrete Fourier transform to the data values g(l/N) = γl, scaling by
the factor 1/a

(
n
N

)
and applying the inverse discrete Fourier transform, we obtain the coefficients

αj in Eq. 12. The two dimensional case is a straightforward extension, where

α̂k,l =
γ̂k,l

a
(
k
N

)
a
(
l
N

) . (24)
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