Differential Dynamical Systems Errata (First Printing)

J. D. Meiss

April 29, 2009

Abstract

Errors are listed by page and line number. The symbol \Longrightarrow means "replace with". A negative line number means count from the bottom of the page. Equation lines are counted as one line.

Note that the first printing has 10987654321 on the copyright page. The second printing should be out in early 2009, and will have 1098765432 on the copyright page.

Chap.	Page	Line	Change	Thanks to
1	$\begin{gathered} \hline 2 \\ 2 \\ 7 \\ 10 \\ 10 \end{gathered}$	$\begin{gathered} \hline 5 \\ 9 \\ -3 \\ -5 \\ -4,-3 \end{gathered}$	"(fluent quantities)" \Longrightarrow "(fluxions)" "find the fluxions" \Longrightarrow "find the fluent quantities" "bounded sequence has a" \Longrightarrow "bounded function has a" "These equations are linear" \Longrightarrow "These equations are affine" "then the equations of motion are not linear but are affine, see Exercise 9.9." \Longrightarrow "additional affine terms are added to the equations, see $\S 2.1$ and Exercise 9.10."	$\begin{aligned} & \hline \text { SS } \\ & \text { SS } \\ & \mathrm{SS} \end{aligned}$
2	31	14	$v_{i} \neq 0 \Longrightarrow v \neq 0$	AGH
	41	-7	"matrices; then" \Longrightarrow "matrices; then (in the Euclidean norm)"	
	42	9	(2.30) should be (2.24)	
	42	-10	Insert (2.23) after "By the definition"	
	42	-6	$T(x)^{k} \Longrightarrow T^{k}(\mathrm{x})$	DNK
	43	-14	"more generally." \Longrightarrow "when the matrices A and B do not commute."	
	47	-6	"fundamental matrix" \Longrightarrow "(principal) fundamental matrix"	SS
	49	4	$n-k \Longrightarrow 2 m$	AGH
	49	5,6	$u_{k+1}, w_{k+1}, \ldots, u_{n}, w_{n} \Longrightarrow u_{1}, w_{1}, \ldots, u_{m}, w_{m}$	
	49	8	$B_{k} \Longrightarrow B_{1}$ AND $B_{n} \Longrightarrow B_{m}$	
	49	9	$B_{k} \Longrightarrow B_{j}$	
	49	11	$C_{k+1}+\cdots+C_{n} \Longrightarrow C_{1}+\cdots+C_{m}$	
	49	-6	$j=k+1, \ldots, n, \Longrightarrow j=1, \ldots, m$	
	49	-3	$B_{k} \Longrightarrow B_{1}$	
	50	-17	$\left(T-\lambda_{j} I\right)_{j}^{n_{j}} v=0 \Longrightarrow\left(T-\lambda_{j} I\right)^{n_{j}} v=0$	
	56	15	Kronnecker \Longrightarrow Kronecker	LOJ
	58	7	$A v_{3}=3 v_{3} \Longrightarrow A v_{3}=1 v_{3}$	CWW
	58	8	$U=(3) \Longrightarrow U=(1), \dot{c}_{3}=3 c_{3} \Longrightarrow \dot{c}_{3}=1 c_{3}$	
	58	-15	"One says that" \Longrightarrow "More precisely, one says that"	SS
	59	12	Add a subscript $k: c_{j l m} \Longrightarrow c_{j k l m}$ and $d_{j l m} \Longrightarrow d_{j k l m}$. Also $j \in \Longrightarrow$ $j, k \in$	
	59	12,13	$K / n_{s} \Longrightarrow K / n_{s}^{2}$ (both lines)	
	63	1,2	"origin is unstable" \Longrightarrow "zero solution is unstable" (both lines)	SS
	65	-9	"for any linear operator" \Longrightarrow "for any bounded linear operator"	
	66	-6	$M^{2}=e^{T R} \Longrightarrow M^{2}=e^{2 T R}$	MS
	68	21 (Ex 9c)	"nilpotencies $0,1,2,3 . " \Longrightarrow$ "nilpotencies 1,2,3."	KOT
	69	10	$\sum_{i=1}^{n_{k}} d_{i j} v_{j} \Longrightarrow \sum_{j=1}^{n_{k}} d_{i j} v_{j}$	AGH
	71	10	"block as in" \Longrightarrow "blocks as in"	

Chap.	Page	Line	Change	Thanks to
3	$\begin{gathered} \hline 76 \\ 79 \\ \\ 86 \\ 98 \\ 99 \\ 99 \\ 103 \end{gathered}$	$\begin{gathered} \hline 18-19 \\ 4 \\ \\ -15 \\ \text { Fig } 3.7 \\ 3 \\ 7 \\ 12 \end{gathered}$	"elements of a convergent" \Longrightarrow "elements of a uniformly convergent" to the phrase "with the L_{∞} norm is complete" append "when E is compact". "complete space $C^{0}\left(\mathbb{R}, \mathbb{R}^{n}\right) " \Longrightarrow$ "complete space $C^{0}\left(J, \mathbb{R}^{n}\right)$ " Vertical axis should be labeled " x_{o} ", not " x " $x: J \rightarrow \mathbb{R}^{n} \Longrightarrow x: J \rightarrow E$ $B_{b}\left(x_{o}\right) \Longrightarrow B_{b_{o}}\left(x_{o}\right)$ (Two places!) In the exponent, $2 K$ should be K.	PJR AGH RC
4	110	4	defines a complete flow \Longrightarrow exists for all $t \in \mathbb{R}$	MS
	110	10	Theorem $3.17 \Longrightarrow$ Theorem 3.18	JA
	110	-10	The vector field F defines a flow on $\mathbb{R}^{n} \Longrightarrow$ The solutions exist for all $t \in \mathbb{R}$	MS
	111	7	(4.7) \Longrightarrow (4.8)	
	111	11	and therefore define a flow. \Longrightarrow and therefore, if $f \in C^{1}$, define a flow.	MS
	111	-11	Theorem $3.17 \Longrightarrow$ Theorem 3.18	JA
	119	11-12	"be appropriate rely" \Longrightarrow "be appropriate to rely"	KOT
	121	7	$g(\delta x)=o\left(\delta x^{2}\right) \Longrightarrow g(\delta x)=O\left(\delta x^{2}\right)$	
	122	8	$y \leq \delta \Longrightarrow\|y\| \leq K \delta$	
	122	11	"Let" \Longrightarrow "Now assume that $\left\|y_{o}\right\| \leq \delta$, let"	
	122	11	$\left\|y_{o} \leq \delta\right\| \Longrightarrow\left\|y_{o}\right\| \leq \delta$	
	123	-2	$L\left(\varphi_{t}(z)\right) \Longrightarrow L\left(\varphi_{s}(z)\right)$	
	130	Ftnt 24	"continuous, bijective map that" \Longrightarrow "continuous, bijective map between compact sets that"	SS
	131	4	"itself, and thus" \Longrightarrow "itself with a C^{1} inverse, and thus"	SS
	136	12	"matrices are linearly conjugate" \Longrightarrow "matrices are similar"	AR
	136	-7	$=\left(h_{2}\left(x_{1}, x_{2}\right)+t x_{2}\right) \Longrightarrow=\left(h_{1}\left(x_{1}, x_{2}\right)+t x_{2}\right)$	SS2
	148	-6	"is a subset M of N " \Longrightarrow is a neighborhood $M \subset N$	MS
	151	-8	$B_{R} \subset E \Longrightarrow B_{R} \supset E$	
	151	(4.49)	This equation is incorrect. Replace it with	
			$R>\frac{r+\sigma}{2}\left\{\begin{array}{cc} 2 & \alpha \leq 2 \\ \frac{\alpha}{\sqrt{\alpha-1}} & \alpha>2 \end{array}, \quad \alpha=b \max \left(1, \sigma^{-1}\right)\right.$	
	151	-5	$R>38 \Longrightarrow R>152 / \sqrt{15}$	
	151	-5	$B_{39} \Longrightarrow B_{40}$	
	152	20	$\frac{d}{d t}(x+y) \Longrightarrow \frac{d}{d t}(\gamma+y)$	
	154	4	$(\partial H / \partial y, \partial H / \partial x) \Longrightarrow(\partial H / \partial y,-\partial H / \partial x)$	
	160	7	"is a unique the equilibrium" \Longrightarrow "is a unique nonnegative equilibrium"	KOT
	161	7	$\dot{z}=2 z \Longrightarrow \dot{z}=z$	KLS
	162	-17	$0 \leq z<Z \Longrightarrow 0 \leq z \leq Z$	KOT
	162	-5	$h\left(\omega\left(h^{-1}(y)\right) \Longrightarrow h\left(\omega\left(h^{-1}(y)\right)\right)\right.$	KOT

Chap. 4	$\begin{gathered} \text { Page } \\ 164 \end{gathered}$	Line 7	Change your systems \Longrightarrow your system's	Thanks to KOT
5	165 174 176 177 188 188 189 189 190 191 191 191 191 192 194 194	7 -2 10 -1 -5 5 -1 6 8 5 -5 -5 -4 -3 5 10 11	$\begin{aligned} & \text { "as } t \rightarrow \infty " \Longrightarrow \text { "as } t \rightarrow-\infty " \\ & x(t)=\Longrightarrow x(t ; \sigma)= \\ & \text { change the last }\|x(t ; \sigma)\| \text { to }\|x(s ; \sigma)\| \\ & v(t)=v(T) \Longrightarrow v(t)=u(T) \\ & g: E^{c} \rightarrow E^{u} \Longrightarrow g: E^{c} \rightarrow E^{s} \\ & F(x, h(x), g(x)) \Longrightarrow F(x, g(x), h(x)) \\ & \{(x, h(x), g(x)): \Longrightarrow\{(x, g(x), h(x)): \\ & F(x, h(x), g(x)) \Longrightarrow F(x, g(x), h(x)) \\ & +\frac{z^{4}}{16 \lambda^{2}} \Longrightarrow+\frac{z^{4}}{1 \lambda^{3}} \\ & \left\{\left(x_{1}, x_{2}, h\left(x_{1}, x_{2}\right)\right)\right\} \Longrightarrow\left\{\left(x_{1}, x_{2}, g\left(x_{1}, x_{2}\right)\right)\right\} \\ & h(x)=\alpha \Longrightarrow g(x)=\alpha \\ & y=h(x) \Longrightarrow y=g(x) \\ & \dot{y}=D h(x)=\frac{\partial h}{\partial x_{1}} \dot{x}_{1}+\frac{\partial h}{\partial x_{1}} \dot{x}_{2} \text { Replace " } h \text { " with " } g \text { " in three places } \\ & y=-x_{2}^{2}-x_{2}^{2} \Longrightarrow y=-x_{1}^{2}-x_{2}^{2} \\ & \dot{x}=-x+y^{2} \Longrightarrow \dot{x}=-x+x y \\ & \dot{y}=2 y+x y \Longrightarrow \dot{y}=2 y+x^{2} \end{aligned}$	AR AR RHG
6	200 212 213 222 222 224 241	-1 -4 -7 -14 -13 4 Ex. 2.12	$T=2 \pi r^{2} \Longrightarrow T=2 \pi / r^{2}$ "a symmetric pair" \Longrightarrow "a symmetric partner" $\begin{aligned} & \left(y+\alpha x^{2} y,-x+\beta y^{2} x^{2}\right)=-\left((-y) \Longrightarrow\left(-y+\alpha x^{2} y,-x-\beta y^{2} x^{2}\right)=\right. \\ & -(-(-y) \\ & \dot{r}=\frac{y^{2}}{2 r} \Longrightarrow \dot{r}=\frac{y^{2}}{r} \\ & \dot{r}=-\frac{y^{4}}{2 r} \Longrightarrow \dot{r}=-\frac{y^{4}}{r} \end{aligned}$ with only one change \Longrightarrow for C^{2} flows there is only one change Replace the \dot{x} equation with $\dot{x}=x-y-x^{2}(x+2 y)-x y^{2}$	$\begin{gathered} \mathrm{AR} \\ \mathrm{AR} \\ \mathrm{RM} \\ \mathrm{RM} \end{gathered}$
7	252 256 258 262 262 266 266 266	$\begin{gathered} 5 \\ 3 \\ -5 \\ 7 \\ -3 \\ 2 \\ 2 \\ 3 \\ 14 \\ \hline \end{gathered}$	For any functions \Longrightarrow For any scalar functions change the x in the 23 element of the matrix (7.21) to $-x$ and set $v_{i i}(0) \Longrightarrow$ and set $v_{i j}(0)$ when $\varepsilon<t \Longrightarrow$ when $\varepsilon<1$ $\begin{aligned} & \sum_{m \in Z^{d}} \Longrightarrow \sum_{m \in \mathbb{Z}^{d}} \\ & <9 \Longrightarrow \leq 9 \end{aligned}$ a Lyapunov basis is \Longrightarrow an eigenvector basis is sides of length $1 / 3 \Longrightarrow$ sides of length $1 / 2$	APR SEO RP

Chap.	Page	Line	Change	Thanks to
8	269	-11	that as $\mu \rightarrow \infty \Longrightarrow$ that as $\mu \rightarrow-\infty$	SS2
	274	19	$=\operatorname{Dhf}(x ; p(\nu)) \Longrightarrow=\operatorname{Dh}(x ; p(\nu)) f(x ; p(\nu))$	MS
	279	7	and when \Longrightarrow and zero when	LOJ
	283	-8	$g(x)=A x+O(3) \Longrightarrow g(\xi)=A \xi+O(3)$	LOJ
	283	-4	calls $L_{A} \Longrightarrow$ calls $-L_{A}$	LOJ
	294	Fig 8.9	of (8.49) for \Longrightarrow of (8.46) for	AA
	294	-7	$b=1 \Longrightarrow b=-1$	AA
9	335	-4	$=\int_{U_{t}} \operatorname{tr}(D f(x(t))) d x \Longrightarrow=\int_{U_{t}} \operatorname{tr}(D f(x)) d x$	
	346	- 8	$\frac{d q}{d s} \Longrightarrow \frac{d q}{d s}(s)$ and $\frac{d t}{d s} \Longrightarrow \frac{d t}{d s}(s)$	LOJ
	368	-5	Hamiltonian flow is \Longrightarrow Hamiltonian flow on M_{c} is	
	369	9	$M_{c} \Longrightarrow \theta$	LOJ
	350	12	is a C^{2} diffeomorphism \Longrightarrow is a C^{2} embedding	
	350	-12	$D h(y) \Longrightarrow D h^{T}(y)$ (in two places) and $D^{2} h(y) \dot{y} \Longrightarrow\left(D^{2} h(y) \dot{y}\right)^{T}$	
	350	-11	$D h(y) \Longrightarrow D h^{T}(y)$	
	361	8	$(2 n-1) n \Longrightarrow(2 n+1) n$	
	362	4	$(2 n-1) n \Longrightarrow(2 n+1) n$	
	370	6	$\omega=\pi(I) \Longrightarrow \omega=\Omega(I)$	
	371	-8	$\|m \cdot \omega\|>c \Longrightarrow\|m \cdot \omega\| \geq c$	
	371	-7	The set $\mathcal{D}_{c, \tau}$ is $\mathrm{a} \Longrightarrow$ The set $\mathcal{D}_{c, \tau} \cap \mathbb{S}^{n-1}$ is a	
	371	-1	$>\frac{d}{\|q\|^{\tau+1}} \Longrightarrow \geq \frac{d}{2\|q\|^{\tau+1}}$	
	372	1	with $d=c / \omega_{2} \Longrightarrow$ with $d=2 c / \omega_{2}$	
	372	4	$[0, d / 2]$ and $[1-\Longrightarrow[0, d / 2)$ and (1-	
	372	9	Thus E is bounded \Longrightarrow Thus L is bounded	
	374	10	$+q^{T} S q$, where $S \Longrightarrow+q^{T} W q$ where W	
	374	-15	two-degrees-of-freedom \Longrightarrow two degree-of-freedom	
	374	-1	let $Q \Longrightarrow \operatorname{let} \mathcal{Q}$	
	375	7	$\Sigma=\Longrightarrow S=$	
	387	-14	Casmir \Longrightarrow Casimir	
	389	5	Exercise 8. \Longrightarrow (9.39).	
	389	-6	$+\frac{m g a}{I} \Longrightarrow+2 \frac{m g a}{I}$	LOJ

