Differential Dynamical Systems Errata (First Printing)

J. D. Meiss

April 29, 2009

Abstract

Errors are listed by page and line number. The symbol \Longrightarrow means "replace with". A negative line number means count from the bottom of the page. Equation lines are counted as one line.

Note that the first printing has $10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1$ on the copyright page. The second printing should be out in early 2009, and will have $10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2$ on the copyright page.

Chap.	Page	Line	Change	Thanks to
1	2	5	"(fluent quantities)" ⇒ "(fluxions)"	SS
	2	9	"find the fluxions" \Longrightarrow "find the fluent quantities"	SS
	7	-3	"bounded sequence has a" \Longrightarrow "bounded function has a"	SS
	10	-5	"These equations are linear" \Longrightarrow "These equations are affine"	
	10	-4,-3	"then the equations of motion are not linear but are affine, see Exercise 9.9 ." \Longrightarrow "additional affine terms are added to the equations, see §2.1 and Exercise 9.10 ."	
2	31	14	$v_i \neq 0 \Longrightarrow v \neq 0$	AGH
	41	-7	"matrices; then" \Longrightarrow "matrices; then (in the Euclidean norm)"	
	42	9	(2.30) should be (2.24)	
	42	-10	Insert (2.23) after "By the definition"	
	42	-6	$T(x)^k \Longrightarrow T^k(\mathbf{x})$	DNK
	43	-14	"more generally." \Longrightarrow "when the matrices A and B do not commute."	
	47	-6	"fundamental matrix" \Longrightarrow "(principal) fundamental matrix"	SS
	49	4	$n-k \Longrightarrow 2m$	AGH
	49	5,6	$u_{k+1}, w_{k+1}, \dots, u_n, w_n \Longrightarrow u_1, w_1, \dots, u_m, w_m$	
	49	8	$B_k \Longrightarrow B_1 \text{ AND } B_n \Longrightarrow B_m$	
	49	9	$B_k \Longrightarrow B_j$	
	49	11	$C_{k+1} + \dots + C_n \Longrightarrow C_1 + \dots + C_m$	
	49	-6	$j = k+1, \ldots, n, \Longrightarrow j = 1, \ldots, m$	
	49	-3	$B_k \Longrightarrow B_1$	
	50	-17	$\left(T - \lambda_j I\right)_j^{n_j} v = 0 \Longrightarrow (T - \lambda_j I)^{n_j} v = 0$	
	56	15	$Kronnecker \Longrightarrow Kronecker$	LOJ
	58	7	$Av_3 = 3v_3 \Longrightarrow Av_3 = 1v_3$	CWW
	58	8	$U = (3) \Longrightarrow U = (1) , \dot{c}_3 = 3c_3 \Longrightarrow \dot{c}_3 = 1c_3$	
	58	-15	"One says that" \Longrightarrow "More precisely, one says that"	SS
	59	12	Add a subscript $k: c_{jlm} \Longrightarrow c_{jklm}$ and $d_{jlm} \Longrightarrow d_{jklm}$. Also $j \in \Longrightarrow j, k \in$	
	59	12,13	$K/n_s \Longrightarrow K/n_s^2 \text{ (both lines)}$	
	63	1,2	"origin is unstable" \Longrightarrow "zero solution is unstable" (both lines)	SS
	65	-9	"for any linear operator" \Longrightarrow "for any bounded linear operator"	
	66	-6	$M^2 = e^{TR} \Longrightarrow M^2 = e^{2TR}$	MS
	68	21 (Ex 9c)	"nilpotencies $0,1,2,3$." \Longrightarrow "nilpotencies $1,2,3$."	KOT
	69	10	$\sum_{i=1}^{n_k} d_{ij} v_j \Longrightarrow \sum_{j=1}^{n_k} d_{ij} v_j$	AGH
	71	10	"block as in" ⇒ "blocks as in"	

Chap.	Page	Line	Change	Thanks to
3	76	18-19	"elements of a convergent" \Longrightarrow "elements of a uniformly convergent"	
	79	4	to the phrase "with the L_{∞} norm is complete" append "when E is compact".	
	86	-15	"complete space $C^0(\mathbb{R}, \mathbb{R}^n)$ " \Longrightarrow "complete space $C^0(J, \mathbb{R}^n)$ "	
	98	Fig 3.7	Vertical axis should be labeled " x_o ", not " x "	PJR
	99	3	$x: J \to \mathbb{R}^n \Longrightarrow x: J \to E$	
	99	7	$B_b(x_o) \Longrightarrow B_{b_o}(x_o)$ (Two places!)	AGH
	103	12	In the exponent, $2K$ should be K .	RC
4	110	4	defines a complete flow \Longrightarrow exists for all $t \in \mathbb{R}$	MS
	110	10	Theorem $3.17 \Longrightarrow$ Theorem 3.18	JA
	110	-10	The vector field F defines a flow on $\mathbb{R}^n \Longrightarrow$ The solutions exist for all $t \in \mathbb{R}$	MS
	111	7	$(4.7) \Longrightarrow (4.8)$	
	111	11	and therefore define a flow. \Longrightarrow and therefore, if $f \in C^1$, define a flow.	MS
	111	-11	Theorem $3.17 \Longrightarrow$ Theorem 3.18	JA
	119	11-12	"be appropriate rely" \Longrightarrow "be appropriate to rely"	KOT
	121	7	$g(\delta x) = o(\delta x^2) \Longrightarrow g(\delta x) = O(\delta x^2)$	
	122	8	$y \le \delta \Longrightarrow y \le K\delta$	
	122	11	"Let" \Longrightarrow "Now assume that $ y_o \le \delta$, let"	
	122	11	$ y_o \le \delta \Longrightarrow y_o \le \delta$	
	123	-2	$L(\varphi_t(z)) \Longrightarrow L(\varphi_s(z))$	
	130	Ftnt 24	"continuous, bijective map that" \Longrightarrow "continuous, bijective map between compact sets that"	SS
	131	4	"itself, and thus" \Longrightarrow "itself with a C^1 inverse, and thus"	SS
	136	12	"matrices are linearly conjugate" \Longrightarrow "matrices are similar"	AR
	136	-7	$=(h_2(x_1,x_2)+tx_2) \Longrightarrow =(h_1(x_1,x_2)+tx_2)$	SS2
	148	-6	"is a subset M of N " \Longrightarrow is a neighborhood $M \subset N$	MS
	151	-8	$B_R \subset E \Longrightarrow B_R \supset E$	
	151	(4.49)	This equation is incorrect. Replace it with	
			$R > \frac{r + \sigma}{2} \begin{cases} 2 & \alpha \le 2\\ \frac{\alpha}{\sqrt{\alpha - 1}} & \alpha > 2 \end{cases}, \alpha = b \max(1, \sigma^{-1})$	
	151	-5	$R > 38 \Longrightarrow R > 152/\sqrt{15}$	
	151		$B_{39} \Longrightarrow B_{40}$	
	152	20	$\frac{d}{dt}(x+y) \Longrightarrow \frac{d}{dt}(\gamma+y)$	
	154	4	$(\partial H/\partial y, \partial H/\partial x) \Longrightarrow (\partial H/\partial y, -\partial H/\partial x)$	
	160		"is a unique the equilibrium" \Longrightarrow "is a unique nonnegative equilibrium"	KOT
	161		$\dot{z} = 2z \Longrightarrow \dot{z} = z$	KLS
	162	-17	$0 \le z < Z \Longrightarrow 0 \le z \le Z$	KOT
	162	-5	$h(\omega(h^{-1}(y)) \Longrightarrow h(\omega(h^{-1}(y)))$	КОТ

Chap.	Page	Line	Change	Thanks to
4	164	7	your systems ⇒ your system's	KOT
5	165	-2	"as $t \to \infty$ " \Longrightarrow "as $t \to -\infty$ "	
	174	10	$x(t) = \Longrightarrow x(t;\sigma) =$	
	176	-1	change the last $ x(t;\sigma) $ to $ x(s;\sigma) $	
	177	-5	$v(t) = v(T) \Longrightarrow v(t) = u(T)$	
	188	5	$g: E^c \to E^u \Longrightarrow g: E^c \to E^s$	AR
	188	-1	$F(x, h(x), g(x)) \Longrightarrow F(x, g(x), h(x))$	
	189	6	$\{(x, h(x), g(x)) : \Longrightarrow \{(x, g(x), h(x)) :$	
	189	8	$F(x, h(x), g(x)) \Longrightarrow F(x, g(x), h(x))$	
	190	5	$+\frac{z^4}{16\lambda^2} \Longrightarrow +\frac{z^4}{16\lambda^3}$	AR
	191	-5	$\{(x_1, x_2, h(x_1, x_2))\} \Longrightarrow \{(x_1, x_2, g(x_1, x_2))\}$	
	191	-5	$h(x) = \alpha \Longrightarrow g(x) = \alpha$	
	191	-4	$y = h(x) \Longrightarrow y = g(x)$	
	191	-3	$\dot{y} = Dh(x) = \frac{\partial h}{\partial x_1}\dot{x}_1 + \frac{\partial h}{\partial x_1}\dot{x}_2$ Replace "h" with "g" in three places	
	192	5	$y = -x_2^2 - x_2^2 \Longrightarrow y = -x_1^2 - x_2^2$	RHG
	194	10	$\dot{x} = -x + y^2 \Longrightarrow \dot{x} = -x + xy$	
	194	11	$\dot{y} = 2y + xy \Longrightarrow \dot{y} = 2y + x^2$	
6	200	-1	$T = 2\pi r^2 \Longrightarrow T = 2\pi/r^2$	
	212	-4	"a symmetric pair" \Longrightarrow "a symmetric partner"	
	213	-7		
	222	-14	$\dot{r} = \frac{y^2}{2r} \Longrightarrow \dot{r} = \frac{y^2}{r}$	AR
	222	-13	$\dot{r} = -\frac{y^4}{2r} \Longrightarrow \dot{r} = -\frac{y^4}{r}$	AR
	224	4	with only one change \Longrightarrow for C^2 flows there is only one change	RM
	241	Ex. 2.12	Replace the \dot{x} equation with $\dot{x} = x - y - x^2(x + 2y) - xy^2$	RM
7	252	5	For any functions \Longrightarrow For any scalar functions	
	256	3	change the x in the 23 element of the matrix (7.21) to $-x$	APR
	258	-5	and set $v_{ii}(0) \Longrightarrow \text{ and set } v_{ij}(0)$	
	262	7	when $\varepsilon < t \Longrightarrow$ when $\varepsilon < 1$	
	262	-3	$\sum_{m \in Z^d} \Longrightarrow \sum_{m \in \mathbb{Z}^d}$	
	266	2	$\langle 9 \Longrightarrow \leq 9$	SEO
	266	3	a Lyapunov basis is \Longrightarrow an eigenvector basis is	
	266	14	sides of length $1/3 \Longrightarrow$ sides of length $1/2$	RP
	l .	l .		l .

Chap.	Page	Line	Change	Thanks to
8	269	-11	that as $\mu \to \infty \Longrightarrow$ that as $\mu \to -\infty$	SS2
	274	19	$= Dhf(x; p(\nu)) \Longrightarrow = Dh(x; p(\nu))f(x; p(\nu))$	MS
	279	7	and when \Longrightarrow and zero when	LOJ
	283	-8	$g(x) = Ax + O(3) \Longrightarrow g(\xi) = A\xi + O(3)$	LOJ
	283	-4	calls $L_A \Longrightarrow \text{calls } -L_A$	LOJ
	294	Fig 8.9	of (8.49) for \Longrightarrow of (8.46) for	AA
	294	-7	$b = 1 \Longrightarrow b = -1$	AA
9	335	-4	$= \int_{U_t} \operatorname{tr}(Df(x(t))) dx \Longrightarrow = \int_{U_t} \operatorname{tr}(Df(x)) dx$	
	346	- 8	$\frac{dq}{ds} \Longrightarrow \frac{dq}{ds}(s)$ and $\frac{dt}{ds} \Longrightarrow \frac{dt}{ds}(s)$	LOJ
	368	-5	Hamiltonian flow is \Longrightarrow Hamiltonian flow on M_c is	
	369	9	$M_c \Longrightarrow \theta$	LOJ
	350	12	is a C^2 diffeomorphism \Longrightarrow is a C^2 embedding	
	350	-12	$Dh(y) \Longrightarrow Dh^T(y)$ (in two places) and $D^2h(y)\dot{y} \Longrightarrow (D^2h(y)\dot{y})^T$	
	350	-11	$Dh(y) \Longrightarrow Dh^T(y)$	
	361	8	$(2n-1)n \Longrightarrow (2n+1)n$	
	362	4	$(2n-1)n \Longrightarrow (2n+1)n$	
	370	6	$\omega = \pi(I) \Longrightarrow \omega = \Omega(I)$	
	371	-8	$ m \cdot \omega > c \Longrightarrow m \cdot \omega \ge c$	
	371	-7	The set $\mathcal{D}_{c,\tau}$ is a \Longrightarrow The set $\mathcal{D}_{c,\tau} \cap \mathbb{S}^{n-1}$ is a	
	371	-1	$> \frac{d}{ q ^{\tau+1}} \Longrightarrow \ge \frac{d}{2 q ^{\tau+1}}$	
	372	1	with $d = c/\omega_2 \Longrightarrow \text{ with } d = 2c/\omega_2$	
	372	4	$[0, d/2]$ and $[1- \Longrightarrow [0, d/2)]$ and $[1-$	
	372	9	Thus E is bounded \Longrightarrow Thus L is bounded	
	374	10	$+q^T S q$, where $S \Longrightarrow +q^T W q$ where W	
	374	-15	two-degrees-of-freedom \Longrightarrow two degree-of-freedom	
	374	-1	$ \text{ let } Q \Longrightarrow \text{ let } \mathcal{Q}$	
	375	7	$\Sigma = \Longrightarrow S =$	
	387	-14	$Casmir \Longrightarrow Casimir$	
	389	5	Exercise 8. \Longrightarrow (9.39).	
	389	-6	$+\frac{mga}{I} \Longrightarrow +2\frac{mga}{I}$	LOJ