Differential Dynamical Systems - Errata (2nd \& 3rd Printings)

J.D. Meiss

January 26, 2016

Errors are listed by page and line number. The symbol \Longrightarrow means "replace with". A negative line number means count from the bottom of the page. Each equation line is counted as one line.

Note that the first printing has 10987654321 on the copyright page. The second printing was out in March 2009, and has 1098765432 on the copyright page. The third printing was out in 2011, and did not have any changes from the 2 nd.

Ch.	Page	Line	Change	Thanks				
	$\begin{aligned} & \hline 102 \\ & 102 \\ & 103 \\ & 103 \\ & 103 \\ & 103 \end{aligned}$	$\begin{gathered} \hline-4 \\ -1 \\ 12 \\ -10 \\ -6 \\ -5 \end{gathered}$	$\left[t_{o}-a, t_{o}+a\right] \Longrightarrow\left[t_{o}-c, t_{o}+c\right]$ for $t \in J \Longrightarrow$ for $t \in\left[t_{o}-a, t_{o}+a\right]$ In the exponent, $2 K$ should be K. $\\|A\\|<M \Longrightarrow\\|A\\| \leq M$ on $[0, b) \Longrightarrow$ on $[0, b]$. use Theorem 3.18 to \Longrightarrow extend Theorem 3.18 to the nonautonomous case to	RC HLS				
4	107	-10	the orbit (4.2). \Longrightarrow the orbit Γ_{x}.	MS				
	110	4	defines a complete flow \Longrightarrow exists for all $t \in \mathbb{R}$	MS				
	110	10	Theorem $3.17 \Longrightarrow$ Theorem 3.18	JA				
	110	13	Delete the sentence "The solution defines a flow by Lemma 4.2"	SR				
	110	-10	The vector field F defines a flow on $\mathbb{R}^{n} \Longrightarrow$ The solutions exist for all $t \in \mathbb{R}$	MS				
	111	10	Delete ", and therefore define a flow"	MS				
	111	-11	Theorem $3.17 \Longrightarrow$ Theorem 3.18	JA				
	113	-1	when E^{c} is empty \Longrightarrow when E^{c} is trivial	RC2				
	121	6	$f_{i}\left(x^{*}+\delta x_{j}\right) \Longrightarrow f_{i}\left(x^{*}+\delta x_{j} \hat{e}_{j}\right)$ AND $g_{i}\left(\delta x_{j}\right) \Longrightarrow g_{i}\left(\delta x_{j} \hat{e}_{j}\right)$					
	122	11	$\left\|y_{o} \leq \delta\right\| \Longrightarrow\left\|y_{o}\right\| \leq \delta$					
	130	-10	$\|a\|<1 \Longrightarrow\|a\| \leq 1$					
	130	Ftnt 24	"continuous, bijective map that" \Longrightarrow "continuous, bijective map between compact sets that"	SS				
	131	4	"itself, and thus" \Longrightarrow "itself with a C^{1} inverse, and thus"	SS				
	132	-10	"map τ " \Longrightarrow "surjective map τ "	HLS				
	132	-5	$t \in\left(y^{-1}, \infty\right) \Longrightarrow t \in\left(-y^{-1}, \infty\right)$					
	136	-6	$=\left(h_{2}\left(x_{1}, x_{2}\right)+t x_{2}\right) \Longrightarrow=\left(h_{1}\left(x_{1}, x_{2}\right)+t x_{2}\right)$	SS2				
	139	-6	$e^{-t A} \cdot H_{1} \cdot \varphi_{t}(x) \Longrightarrow e^{-t A} \circ H_{1} \circ \varphi_{t}(x)$					
	145	12-14	Replace with " $z \in \bar{\Gamma}_{\varphi_{T}(x)}^{+}$. There are now two possibilities: z may be a point in $\Gamma_{\varphi_{T}(x)}^{+}$for each $T \geq 0$ or not. In the first case there must be infinitely many times $t_{n} \rightarrow \infty$ such that $z=\varphi_{t_{n}}(x)$ implying that z is a limit point and thus in $\omega(x)$. In the latter case there is some time $T \geq 0$ for which $z \notin \Gamma_{\varphi_{T}(x)}^{+}$. Since by assumption z is in the closure of $\Gamma_{\varphi_{T}(x)}^{+}$, then by"	RM				
	145	-16	$\in \omega(s) \Longrightarrow \in \omega(x)$	MS				
	148	18	$\omega(x) \in B \Longrightarrow \omega(x) \subset B$	MS				
	148	-16	Lemma $4.14 \Longrightarrow$ Lemma 4.15	MS				
	148	-6	"is a subset M of N " \Longrightarrow is a neighborhood $M \subset N$	MS				
	150	8	an attractor \Longrightarrow an attracting set	JGR				

Chap.	Page	Line	Change	Thanks to
	158	15-22	Replace these lines with \Longrightarrow basis vectors perpendicular to $f\left(x_{o}\right)$, then $W W^{T}$ is the projection onto S where $W=\left(w_{1}, w_{2}, \ldots, w_{n-1}\right)$. The matrix $D P$ in the w_{i} basis has the representation $W^{T} D Q\left(x_{o}\right) W$. Since $W^{T} f\left(x_{o}\right)=0$, we obtain $D P\left(x_{o}\right)=W^{T} M W .$ Now add the unit vector $\hat{f}=f\left(x_{o}\right) /\left\|f\left(x_{o}\right)\right\|$ to W to form the orthogonal matrix $U=(W, \hat{f})$. The spectrum of M is identical to that of the similar matrix $\tilde{M}=U^{T} M U=\left(\begin{array}{ll} D P\left(x_{o}\right) & 0 \\ \hat{f}^{T} M W & 1 \end{array}\right)$ Because the last column has only one nonzero element, $\operatorname{det}(\lambda I-\tilde{M})=$ $(\lambda-1) \operatorname{det}\left(\lambda I-D P\left(x_{o}\right)\right)$. $\mathbb{R}^{+} \times \mathbb{S} \Longrightarrow[0, \infty) \times \mathbb{S}$	HPR
5	173	-11	$D f\left(x_{o}\right)=A \Longrightarrow D f\left(x^{*}\right)=A$	TB
	177	-5	Replace this line with \Longrightarrow any t and any $\varepsilon>0$ there is a $T \geq t$ such that $v(t) \leq u(T)+\varepsilon$. Thus, using (5.22), gives	SS \& MS
	177	-4,-2,-1	for each equation \Longrightarrow add an ε to the right hand side of each of the three inequalities.	
	178	1	$u(T+s) \leq v(T)=v(t) \Longrightarrow u(T+s) \leq v(t)$	
	178	5	$z(t) \leq M+\frac{L}{\beta} \int_{0}^{t} z(s) d s \Longrightarrow z(t) \leq M+\varepsilon e^{\alpha t}+\frac{L}{\beta} \int_{0}^{t} z(s) d s$	
	178	6	replace this line with \Longrightarrow This is of the form of the Grönwall's lemma in Ex. 3.9, so that $z(t) \leq\left(M+\varepsilon e^{\alpha t}\right) e^{t L / \beta}$. Since this is true for any $\varepsilon>0$, rewriting it in	
	186	3	where E^{c} is empty. \Longrightarrow where E^{c} is trivial.	MS
	186	5	where E^{c} is not empty. \Longrightarrow where $E^{c} \neq\{0\}$.	MS
	186	14	C^{k} invariant manifolds $\Longrightarrow C^{k}$ locally invariant manifolds	TB
	190	-7	$\dot{z}=z \Longrightarrow \dot{z}=\lambda z$	MS
6	222	9	$\Sigma \in \varphi_{t_{n}} \Longrightarrow \Sigma \ni \varphi_{t_{n}}$	JGR
	220	13-14	such that $f(x) \neq 0$ for all $x \in \Sigma \Longrightarrow$ such that whenever $x \in \Sigma, f(x)$ is transverse to Σ	TB
	222	-8	The sixteenth \Longrightarrow Part of the sixteenth	
	222	-6-7	Replace the phrase beginning "to show" with \Longrightarrow "to find an upper bound for the number of limit cycles for a polynomial vector field on \mathbb{R}^{2}."	JMG
	222	-2	$(\text { Shi, 1988 }) \Longrightarrow(\text { Shi, 1980 })$	HPR
	223	1	$\lambda=10^{-200} \Longrightarrow \lambda=-10^{-200}$	HPR
	223	3	unstable foci \Longrightarrow foci	HPR

Chap.	Page	Line	Change	Thanks to
7	245 251 253 256 259 260 263 263 265 265	$\begin{gathered} \hline-8 \\ 1 \\ -1 \\ 3 \\ 2 \\ -7 \\ -2 \\ -1 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & \theta_{1}\left(t_{n}\right)=\alpha_{n} \Longrightarrow \theta_{1}\left(t_{n}\right)=\alpha_{1} \\ & \Phi(t ; x v) \Longrightarrow \Phi(t ; x) v \\ & \mu(x, v) \Longrightarrow \mu(x, v(0)) \end{aligned}$ In equation (7.21) flip the sign of both x 's in the matrix When $\mu_{1}<\mu_{2} \Longrightarrow$ When $\mu_{1} \leq \mu_{2}$ of a set $S \Longrightarrow$ of a bounded set S $\mu_{1}+\mu_{2} \leq \operatorname{tr}(D f) \Longrightarrow \mu_{1}+\mu_{2} \geq \operatorname{tr}(D f)$ Thus there \Longrightarrow Thus if the spectrum is regular there then $\mu=\operatorname{Re}(\lambda) \Longrightarrow$ then $\mu=\frac{1}{T} \operatorname{Re}(\lambda)$ $\text { that } \chi(F) \leq \chi(f) \Longrightarrow \text { that } \chi(F) \leq \max (0, \chi(f))$	TB JGR JGR AML, ASD
8	269 271 274 274 274 275 280 280 289 290 294 294 303 303	-11 -6 1-2 19 20 Fig 8.5 Fig 8.7 -1 -1 -6 Fig 8.9 -7 -9 -7	that as $\mu \rightarrow \infty \Longrightarrow$ that as $\mu \rightarrow-\infty$ $\left(x_{o}, \mu_{0}\right) \Longrightarrow\left(x_{o}, \mu_{o}\right)$ Replace sentence with"The range of dynamics of the induced vector field f can be as rich as those of g, but may also be simpler." $=D h f(x ; p(\nu)) \Longrightarrow=D h(x ; p(\nu)) f(x ; p(\nu))$ of $(0,0) . \Longrightarrow$ of $(0,0)$, recall (4.34). $\begin{aligned} & f(x ; \nu) \Longrightarrow f(x ; \mu) \\ & \alpha(\mu) \Longrightarrow m(\mu) \end{aligned}$ Using the definition (8.16) of m, \Longrightarrow Using $m(\mu)=f(\xi(\mu) ; \mu)$, $\begin{aligned} & 1+\beta+r^{2} \Longrightarrow 1+\beta r^{2} \\ & g_{1}(x ; \eta(\mu), \mu) \Longrightarrow g_{1}(x ; \eta(x ; \mu), \mu) \end{aligned}$ of (8.49) for \Longrightarrow of (8.46) for $b=1 \Longrightarrow b=-1$ $f: C^{3}\left(\Longrightarrow f \in C^{3}(\right.$ $D_{x}^{2} f(0 ; 0) \Longrightarrow D_{x}^{2} f(0 ; 0)=0$	$\begin{aligned} & \hline \text { SS2 } \\ & \mathrm{MS} \\ & \mathrm{MS} \\ & \mathrm{MS} \\ & \\ & \mathrm{MS} \\ & \mathrm{MS} \\ & \\ & \mathrm{AA} \\ & \mathrm{AA} \end{aligned}$
9	$\begin{aligned} & \hline 361 \\ & 362 \\ & 371 \\ & 371 \\ & 371 \\ & 372 \\ & 372 \end{aligned}$	$\begin{gathered} \hline 8 \\ 4 \\ -8 \\ -7 \\ -1 \\ 1 \\ 4 \end{gathered}$	$\begin{aligned} & (2 n-1) n \Longrightarrow(2 n+1) n \\ & (2 n-1) n \Longrightarrow(2 n+1) n \\ & \|m \cdot \omega\|>c \Longrightarrow\|m \cdot \omega\| \geq c \end{aligned}$ The set $\mathcal{D}_{c, \tau}$ is a \Longrightarrow The set $\mathcal{D}_{c, \tau} \cap \mathbb{S}^{n-1}$ is a $>\frac{d}{\|q\|^{\tau+1}} \Longrightarrow \geq \frac{d}{2\|q\|^{\tau+1}}$ with $d=c / \omega_{2} \Longrightarrow$ with $d=2 c / \omega_{2}$ $[0, d / 2]$ and $[1-\Longrightarrow[0, d / 2)$ and (1-	
App	394	3	meshgrid (-pi,pi/10,pi) \Longrightarrow meshgrid (-pi:pi/10:pi)	JA
Ref	405	Shi	Replace with \Longrightarrow Shi, S. L. (1980). "A Concrete Example of the Existence of Four Limit Cycles for Plane Quadratic Systems." Sci. Sinica 23(2): 153-158.	

