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Average exit time for volume-preserving maps
J. D. Meiss
Program in Applied Mathematics, University of Colorado, Boulder, Colorado 80304

~Received 15 April 1996; accepted for publication 24 June 1996!

For a volume-preserving map, we show that the exit time averaged over the entry set of a region is
given by the ratio of the measure of the accessible subset of the region to that of the entry set. This
result is primarily of interest to show two things: First, it gives a simple bound on the algebraic
decay exponent of the survival probability. Second, it gives a tool for computing the measure of the
accessible set. We use this to compute the measure of the bounded orbits for the He´non quadratic
map. © 1997 American Institute of Physics.@S1054-1500~97!00101-8#
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One important aspect of chaos in conservative dynamica
systems is that chaotic and regular regions are inter-
mixed in an intricate way in the phase space. This can
have important implications for transport properties of
these systems. For example, orbits of an area-preservin
map are eternally trapped in a region if they are enclosed
by an invariant circle, but can leak through destroyed
circles „cantori…. In this paper we obtain an effective
technique for computing the fraction of trapped orbits.
The result, applied to the Hénon map, shows that the
trapped fraction depends in an intricate way on the
structure of the chaotic set.

I. INTRODUCTION

In this paper we study the time of escape for orbits t
begin in a specified regionA under the dynamics of a mapf
on a phase spaceM . We discuss theexit time, the time for a
point to first exit the set, and thetransit time, the time for a
point to traverse the set. Theexit time distributionis the
probability distribution of exit times. Our primary goal is t
use this distribution to probe the trapped invariant set. T
trapped set is generally quite difficult to compute, and is
interest because its boundaries are extremely ‘‘sticky’’1–13

and so even untrapped orbits feel its influence. Our res
apply to volume-preserving maps in any dimension wh
the mechanisms for trapping and escape are much
understood.14

The theoretical result obtained in this paper is n
new—it was essentially obtained by Kac in 1947,15,16and he
even quotes earlier results of Birkhoff~1931! and Smolu-
chowski~1916!. Kac was studying the mean first return tim
to a region in a bounded phase space for an ergodic sys
this can be called the mean Poincare´ recurrence time or Poin
caré cycle. He obtains his result as a consequence of
Poincare´ recurrence theorem.16 We reformulate the result fo
nonergodic systems, and show how it can also be obta
by considering the mean first exit time.

In his 1957 lecture Kac16 remarks that the mean recu
rence time is ‘‘the only quantity which is tractable for ge
eral dynamical systems;’’ however, he abandons it as ‘‘re
tively useless.’’ We will not take this admonition to hea
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and use our formulation to compute the measure of
trapped orbits.

As an example, consider He´non’s area-preserving, qua
dratic map, which we write as

H:~x,y!→~y2k1x2,2x!. ~1!

We are interested in the set of bounded orbits. It is poss
to show that~for k.21! all bounded orbits are contained i
thesquare$z5(x,y):ux,yu,xs%wherexs,e5 16 A11k.Here
we denote the two fixed points~for k.21! by ze5(xe ,2xe)
andzs5(xs ,2xs). The first is elliptic when21,k,3, and
the second is a saddle. Bounded orbits include all perio
orbits and all orbits within invariant circles; for example, th
latter exist in the neighborhood ofze providing it is elliptic
and has a rotation number,v, that is not13 or

1
2 ~i.e., kÞ5

4 or
>3!. Hyperbolic orbits can also be trapped: for examp
those that are homoclinic to the saddle fixed point.

In his original paper,17 Hénon studied the set of bounde
orbits of H ~in a different coordinate system than our!
by iterating points along a segment of the symmetry l
(x52y) to determine the subintervals that did not reach
fixed large distance from the origin within 100 iterations. H
noted that ask varies, the boundaries of the trapped interv
either closely follow the position of an unstable rotation
periodic point or else an island around an elliptic period
point. Channon and Leibowitz18 studied the escape and tra
ping from the period 5 island chain in the He´non map at
k520.422. They identified the exit and entrance lobes of
resonance as the important sets to consider. Studying
fifth power of the map, they started 7750 orbits in the ou
entrance lobe and computed the survival probability distri
tion. This was found to decay ast2a with a50.5 for short
times~up to 10 iterates!, but deviated from this for moderat
times ~up to 45 iterates!.

Karney19 also considered the He´non map, and studied
the survival probability for a squareA enclosing all bounded
orbits. He mostly studiedk520.6 where the most prominen
island chain is period 6. Karney’s primary object of stu
was the ‘‘trapping time statistic’’ which is proportional to th
exit time distribution forA. He found that this distribution
decayed ast2~a12! with a about 0.25, for times up to 104

iterates, though the slope subsequently appears to vary
times up to 108. Chirikov and Shepelyansky20 computed the
Poincare´ recurrence distribution for the standard map wh
139© 1997 American Institute of Physics
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there is a critical golden circle, obtaininga50.34 up to 105

iterates. Though algebraic decay has been observed in m
Hamiltonian systems and symplectic maps~indeed, when-
ever there are elliptic orbits the decay appears to be a
braic!, the exponent for the decay is apparently n
universal.21 One reason this might be so, according
Murray,22 is that the self-similar limit is not reached fo
‘‘short’’ time computations. The Poincare´ recurrence distri-
bution has also been computed for flows, for example
Zaslavsky and Tippet.23 @Interestingly, they speculate that
relation like our Eq.~13! holds.#

Rom-Kedar and Wiggins have emphasized the fact
one can obtain a complete description of transport throug
region by considering the future history of only the enteri
trajectories.5 Using their notion of ‘‘lobe dynamics’’ for a
homoclinic tangle, they obtained an expression for the ac
sible region in terms of the exit time distribution—we w
use a slightly generalized version of this below.

II. DEFINITIONS

Let f :M→M be a homeomorphism with an invaria
measurem. For measurable setsA,B,M , thecrossing time
~or first passage time! for aPA to B is defined as

tA→B~a!5min
n.0

~n: f n~a!PB!. ~2!

We let tA→B(a)5` if a never reachesB. If B is the comple-
ment ofA, then the crossing time is called the~forward! exit
time

t1~a!5tA→M \A~a!. ~3!

Similarly the backward exit time foraPA is defined as

t2~a!5min
n.0

~n: f2n~a!¹A!. ~4!

If B5A, then the crossing time is called the first return tim

t return~a![tA→A~a!, for aPA. ~5!

According to our definitiont return(a)>1, and is equal to 1
whenever the point does not leave on the first iterate.
define theexit set E,A as the subset with exit time 1, an
the entry ~or incoming! set I,A as the set with backward
exit time 1; equivalently,

E5A\ f21~A!, I5A\ f ~A!. ~6!

The turnstile is the union ofE and I .
As an example, consider the He´non map in Eq.~1!. A

natural choice for the regionA is the ‘‘resonance zone,’
shown in Fig. 1, consisting of the region bounded by
segments of the left-going branches of the stable and
stable manifolds of the saddle fixed point up to their fi
intersection on the symmetry line (x52y). This region con-
tains all bounded orbits ofH.
CHAOS, Vol. 7,
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The transit time of a pointa is the sum of its forward
and backward exit times minus 1~to get rid of an annoying
term!,

t transit~a![t1~a!1t2~a!21. ~7!

The transit time is an orbit invariant: each point along
orbit has the same transit time. Thetransit time decomposi-
tion of a set is the partition of a set into subsets with eq
transit time. We denote the transit time decomposition of
entry setI by setsTj ; this is also the part ofI with exit time
j :

Tj5$aPI :t1~a!5 j %. ~8!

For example, we show the first few preimages of the exit
in sequentially lighter shades of red for the He´non resonance
zone in Fig. 1. For this parameter valueT15T25T35f and
T4 is shown. A partial transit time decomposition of th
Hénon entry set is shown in Fig. 2.

By measure preservation, almost every point that en
A must eventually escape, so

m~E!5m~ I !5(
j51

`

m~Tj !. ~9!

The accessible set,Aacc,A is defined to be the set with
finite backward exit time; it is the set that can be reach
from the outside:

Aacc5$aPA:t2~a!,`%. ~10!

Of course, the set with finite exit time differs fromAacc at
most by a set of measure zero, since the set that enters
never exits must have measure zero.

FIG. 1. Exit and entry sets for the fixed point resonance of the He´non map
for k50.5.
No. 1, 1997
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FIG. 2. Exit time decomposition of the entry set of the He´non trellis atk50.5. Color scale is given at the bottom.
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III. AVERAGE EXIT TIME

In this paper we are interested in these transport tim
averaged over sets of initial conditions. For a functiong(z)
we denote

^g&S[
1

m~S!
E
S
g~z!dm.

Remarkably, there are some simple formulas for aver
transport times. The following lemma was stated for volu
preserving flows~without its elementary proof! in Ref. 24
and is implicitly obtained for two-dimensional maps in Re
25.

Average Exit Time Lemma:The average exit~transit!
time for incoming orbits is

^t1& I5^t transit& I5
m~Aacc!

m~ I !
. ~11!

Proof: SinceTj,I are disjoint and cover almost all ofI
and the exit~and transit! time of the setTj is j , the average
exit time is given by
CHAOS, Vol. 7,
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^t1& I5
1

m~ I ! (
j51

`

jm~Tj !,

assuming the sum exists. Given the transit time decomp
tion Tj , we can compute the accessible subset ofA using the
sets

Tj
i5 f i~Tj !.

Note thatTj
i,A for i50,...,j21, and that these sets ar

disjoint because they have transit timej and backward exit
time i11. Furthermore the union of these sets is, up to m
sure zero, the entire subset ofA that exits. Thus by definition

Aacc5 ø
j51

`

ø
i50

j21

Tj
i⇒m~Aacc!5(

j51

`

(
i50

j21

m~Tj
i !.

Since measure is preservedm(Tj
i )5m(Tj ), and so

m~Aacc!5(
j51

`

jm~Tj !. ~12!
No. 1, 1997

¬AIP¬license¬or¬copyright,¬see¬http://chaos.aip.org/chaos/copyright.jsp



on
a

e-

e

o
s
:

te

s

g

t

t

s

e

ts

ge

o

ag

,

on-

ld
-

is

e

142 J. D. Meiss: Exit time for maps

Do
An almost identical expression was obtained by Kac~see
Ref. 16, p. 66! though he does not make the interpretati
about the accessible region. Rom-Kedar and Wiggins h
also obtained this result.25 Comparing Eq.~12! with the ex-
pression for ^t1& I gives the lemma. Finally since
m~Aacc!<m(A), it is clear that the sum in Eq.~12! con-
verges. h

Sincem~Aacc! is finite, a simple consequence of this r
sult is:

Corollary 1: The measure of the region with transit tim
t must decay faster thant22.

Furthermore, the lemma implies well-known results f
the average return time obtained by Kac and Smoluchow
~Refs. 15–16!. In our context these can be generalized to

Corollary 2 (Smoluchowski):Supposem(M )51. The
average first return time for points that escape in one s
from A,M is

^t return&E511
m~Macc\A!

m~E!
511

m~Macc!2m~A!

m~E!
,

whereMacc is the subset ofM that is accessible to orbit
beginning inA.

Proof: Consider the setM \A. Points enter it by escapin
from A, so the entry set ofM \A is f (E). The corollary fol-
lows from the Lemma if we replaceAaccbyMacc\A, andI by
f (E). We then add one to the result, since the return time
A is one larger than the transit time throughM . h

Corollary 3 (Kac):Supposem(M )51. The average firs
return time to a regionA,M is

^t return&A5
m~Macc!

m~A!
, ~13!

whereMacc is the subset ofM that is accessible to orbit
beginning inA.

Proof: For points that stay inA for at least one step, th
first return time is one. The remaining portion ofA is its exit
setE. We use Corollary 2 for the return time for these poin
So the average first return time toA is

^t return&A5
1

m~A!
@~m~A!2m~E!!311m~E!3^t return&E#.

This reduces to the promised result. h

We can also easily compute the transit time avera
overA:

Corollary 4: The average transit time for points that d
escape fromA is

^t transit&Aacc5
1

m~Aacc!
(
j51

`

j 2m~Tj !, ~14!

providing that this sum converges. In this case, the aver
exit time forA is

^t1&Aacc5
1

2
~^t transit&Aacc11!. ~15!

Proof: Since each image ofTj has the same transit time
the area ofA that has transit timej is jm(Tj ). This gives
~14!. Equation~15! follows from
CHAOS, Vol. 7,
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^t1&Aacc5
1

m~Aacc!
(
j50

`

m~Tj !(
k50

j21

~ j2k!

5
1

m~Aacc!
(
j50

`
j ~ j11!

2
m~Tj !. h

In contrast to the exit time averaged overI , we cannot use
disjointness to show that~14! converges. In fact as we show
by a simple example in Sec. V, these sums need not c
verge.

IV. EXIT TIME DISTRIBUTIONS

As was emphasized by Rom-Kedar and Wiggins,5 if one
knows theTj , one has most of the information one cou
want about transport throughA. Here we recall some defini
tions of normalized exit and transit time distributions.

The exit time probability distribution for the entry set
the probability that a trajectory inI will have a given exit
time:

Prob~ t1~ I !5 j !5
m~Tj !

m~ I !
. ~16!

Similarly the survival probability is the probability that th
exit time will be at leastk:

Prob~ t1~ I !>k!5
1

m~ I ! (
j5k

`

m~Tj !. ~17!

Note that Prob~t1(I )>1!51 by Eq.~9!.
Once we know theTj , various distributions forA are

also known. For example, sincef j (Tk1 j ),Aacchas exit time
k ~with backward exit timej11!, the subset ofAacc that has
exit time k is given byø j50

` f j (Tk1 j ). Thus the exit time
probability distribution forAacc is

Prob~ t1~Aacc!5k!5
1

m~Aacc!
(
j5k

`

m~Tj !

5
1

^t1& I
Prob~ t1~ I !>k!,

which is the same as the survival distribution forI in Eq.
~17!, up to normalization. Similarly the subset ofA with
transit timej is øk50

j21 f k(Tj ), thus the transit time probability
is

Prob~ t transit~Aacc!5 j !5
1

m~Aacc!
(
k50

j21

m~Tj !5 j
m~Tj !

m~Aacc!
.

Finally the survival time distribution forA is

Prob~ t1~A!>k!5
1

m~Aacc!
(
j5k

`

(
m5 j

`

m~Tm!

5
1

m~Aacc!
(
j51

`

jm~Tk1 j !.

Note that these equations imply that if, e.g.,

m~Tk!;k2~21a!, as k→`,
No. 1, 1997
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wherea.0 by Corollary 2, then we have

Prob~ t1~ I !5k!;k2~a12!,

Prob~ t1~ I !>k!;Prob~ t1~Aacc!5k!

;Prob~ t transit~Aacc!5k!;k2~a11!,

Prob~ t1~Aacc!>k!;k2a.

V. EXAMPLES

Consider the linear, area-preserving, hyperbolic map

S x8y8D 5S l 0

0 l21D S xyD ,
where l.1. Let A be the unit square$(x,y):0<x,y<1%.
Then the entrance set is the rectangleI5A\ f (A)
5$(x,y):0<x<1,l21,y<1%. It is easy to see that the
transit time decomposition~see Fig. 3! of I is

Tj5$~x,y!:l2 j,x<l12 j , l21,y<1%.

So the measures of each of these regions are

m~Tj !5
~l21!~12l21!

l j . ~18!

These decay exponentially, as one would expect. The cal
lations needed for Eqs.~9!, ~12!, and~14! are derivatives of
simple geometric sums, yielding

(
j51

`

m~Tj !5~12l21!5m~ I !,

(
j51

`

jm~Tj !515m~A!,

FIG. 3. Transit time decomposition of the entry region for the linear hype
bolic map. The transiting regionsTj , j51,2,3 and a few of their iterates are
shown.
CHAOS, Vol. 7,
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j51

`

j 2m~Tj !5
l11

l21
,

as required by the lemma. Thus the average transport ti
are

^t1& I5
l

l21
, ^t transit&A5

l11

l21
, ^t1&A5

l

l21
. ~19!

These results are unchanged if we scale the size ofA ~since
the map is linear!, or if we replaceA by a square centered o
the fixed point~since the map is symmetric!.

More generally, suppose the map is a diagonal hyp
bolic matrix with eigenvalues (l1 ,l2 ...,ld ,md11,
m2 ...,mn), where theli.1 and themj,1. Then the entry se
of the unit hypercubeA is the union of rectangular cylinders

I5 ø
k5d11

n

$~x1 ,...xn!PA:mk,xk<1%.

If we defineL5Pi51
d l i , andP5Pi5d11

n m i to be the total
expansion and contraction, respectively, then a simple ca
lation gives the measure of the transit regions by

m~Tj !5
~L21!~12P!

L j , ~20!

in complete accord with Eq.~18!. In the volume preserving
case, we see thatLP51, and so the formulas Eqs.~9!, ~12!,
and~14! again hold, and the average times are given by
~19! with l replaced byL.

A similar formula would apply to the uniform horsesho
This case, and that of other trellis types, have been treate
Rom-Kedar,25 who estimates the accessible area under
assumption that the transit decomposition stretches
formly.

Though the regionA that we considered above is sp
cial, a theorem of Easton12 implies that the rate of escape fo
any isolating neighborhoods of an invariant set areasymp-
totically similar. Thus any region surrounding the fixed poi
will have escape that is exponential with rateL. Similarly,
any diagonalizable hyperbolic map with expansionL will
also have the same asymptotic rate.

Of course, we expect exponential decay of the tran
time decomposition for a hyperbolic system. As we r
marked in the Introduction, numerical observations of tra
port, however, indicate that the transit time decomposit
decays algebraically when there are elliptic regions inA. The
simplest example of this behavior is the trivial shear~see Fig.
4!:

x85x1y8,

y85y.

Let A be the unit square as before. Now the entry set is
triangle I5$(x,y)50<x,y<1%. The transit time decom-
position is

Tj5$~x,y!PI :12 jy,x,12~ j21!y%.

These sets have measures that decrease algebraically

-

No. 1, 1997
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m~T1!5
1

4
, m~Tj !5

1

j ~ j 221!
j.1.

The sums to get the average transport times are eleme
telescoping sums, and again these verify Eqs.~9! and ~12!.
However, for this example the average transit time forA, Eq.
~14!, does not exist.

VI. BOUNDED ORBITS FOR THE HÉNON MAP

As a final example we use the average transit tim
which is straightforward to compute, as an effective meth
to obtain the accessible area, which is not otherwise com
able. Here we do this for the resonance zone of the He´non
map. The calculation involves several steps. First we find
points on the minimizing and minimax homoclinic orbits,zm
andzh , that bound the lobe~see Fig. 1!. We then construct
the boundary of the entry set, by discretizingWu andWs, as
graphsyu(x) andys(x), to a resolutionh5(xm2xh)/N for a
fixed number of pixelsN. Generally, in our calculation we
usedN5104. By reversibility, the exit set is the reflection o
the entrance set aboutx1y50. The average exit time,^t1& I ,
is given by an integral of the piecewise constant exit ti
over the entry set. We do this double integral in the m

naive way by first integratingT(x) 5 *yu(x)
ys(x) t 1 (x,y)dy for

fixed x, and then integrating overx using Simpson’s rule. To
computeT(x), we use bisection to zoom in on the discon
nuities of t1: first evaluatet1 on a grid of sizeh; if t1 does
not change between two grid points, we assume~possibly
incorrectly! that it is constant between. If there is a chan
we bisect the interval until eithert1 is equal on the end
points, or the perceived error in neglecting the variation int1

is small enough~we chose an error of 1023 for this!. Also,
we truncatet1 at some maximum value, usuallytmax5106.
Then T(x) is the sum of thet1 values times the interva
lengths. The resulting average exit time is shown in Fig
Though^t1& I is generally decreasing as a function ofk, there
are numerous small upward jumps. We discuss these m
below.

The area of the lobe is either given by summing t
number of pixels in the exit set, or taking the difference

FIG. 4. Transit time decomposition for the simple shear.
CHAOS, Vol. 7,
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action between the two homoclinic points.27 Thenm~Aacc! is
obtained from Eq.~11!. It is interesting to compare this with
the total area of the resonance zone itself,m(A). This is most
easily computed by taking the difference in action betwe
the action of the minimax homoclinic point and the fixe
point.27 These areas are shown in Fig. 6.

Note that the resonance and lobe area grow monot
cally and smoothly. The valuek521 corresponds to the
saddle-node bifurcation, where the fixed point resona
zone is created. Slightly above this point, the lobe area,DW

FIG. 5. Average exit time for the He´non map as a function of paramete
Most points usedN5104 and tmax5106, though for k,20.95, we used
tmax553107.

FIG. 6. Resonance and lobe area for the He´non map. Also shown ism~T1!,
which is nonzero beyond the formation of the geometric horseshoe
k'5.706.
No. 1, 1997
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is exponentially small28 and most of the resonance is fille
with invariant curves.

Combining these results, using Eq.~11! gives the acces
sible area. In Fig. 7 we show the accessible fracti
m~Aacc!/m(A). The area that is inaccessible, which is iden
cal to the measure of the bounded orbits is given by

m~Ai !5m~A!2m~Aacc!5m~A!2m~ I !^t1& I .

This area is shown in Fig. 8; this figure is nearly identical
Fig. 4 of Ref. 1, but our method allows us to compute t
results to much higher precision. The accuracy can be s

FIG. 7. Accessible fraction for the fixed point resonance of the He´non map.

FIG. 8. Measure of the bounded orbits for the He´non map.
CHAOS, Vol. 7,
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better in the next figure, which is the best representation
this information, Fig. 9. This shows the inaccessible fractio
m(Ai)/m(A).

In Figure 9, the cutoff at a relative area of 1023 is an
artifact of our numerical method—it is quite difficult to re
duce the error significantly. To do this one must increase
maximum number of iterations,tmax, to pick out narrow cha-
otic layers near invariant circles, and one must increaseN to
find all possible discontinuities in the exit time. It would b
nice to improve the accuracy by detecting these discontin
ties and find a form that fitsT(x) in their neighborhood, but
we have not done that.

The most prominent features in Fig. 9 are local minim
neark50 andk51.25. These correspond to the quadrupli
and tripling bifurcations of the elliptic fixed point. In the
period four case, a pair of orbits with rotation number 1/4 a
created at the bifurcation. Interestingly for 0,k,0.4, the
saddle period four orbit, which has points arranged on
square with corners (6Ak,6Ak), has nearly coincident
stable and unstable manifolds—for practical purposes, a
eroclinic connection, Fig. 10. Furthermore for 0.2,k,0.4
this feature dominates the inaccessible set. Using this
proximation givesm(Ai);4k for k.0—this formula, shown
in Fig. 9, gives good agreement with the computed resu
Of course, there are other inaccessible islands, most im
tantly islands around the ellipticv51/4 orbit. These cause
the fraction for 0,k,0.2 to deviate from our simple form

FIG. 9. Inaccessible fraction of the resonance zone for the He´non map. The
two solid curves represent simple approximations to the area enclose
near heteroclinic connections for the period three and period four sa
orbits. The fraction falls off on average exponentially withk, aside from
dips near prominent bifurcation points. Along the top are shown thek values
for bifurcations of the elliptic point~labeled by rotation numberp/q!, and
homoclinic bifurcations corresponding to the creation of type 2, 3, an
trellises.
No. 1, 1997
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A pair of period three orbits is created by saddle-no
bifurcation atk51. At k55/4 the period three saddle collide
with the elliptic fixed point and there are no encircling i
variant curves. Near this bifurcation, the most important f
ture is the virtually perfect saddle connection of the ma
folds of the period three saddle~see Fig. 10!, which
has points at ~2b,b!→~211b,b!→~2b,12b!, with b
5 Ak21. Using a triangle as an approximation for this ar
givesm(Ai);1/2~2b21!2. The resulting curve is also show
in Fig. 9; it fits remarkably well for 1.28,k,2. Note that,
contrary to the impression given by Fig. 9, the inaccess
fraction does not go to zero atk51.25. In particular, there is

FIG. 10. Hénon map fork50.2 andk51.6. The outermost invariant curv
surrounding the elliptic fixed point is closely approximated by a sad
connection of thev51/4 and the 1/3 saddle orbits, respectively. Bounds
the two figures are~21,1!3~21,1! and ~21,0!3~0,1!, respectively.
CHAOS, Vol. 7,
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a second period three orbit,~1/2,21/2!→~23/2,21/2!→~1/
2,3/2!, that is elliptic. The island chain surrounding this orb
~see Fig. 11!, has a relative area about 531024, accounting
for most of the inaccessible area. There are no other vis
islands.

There are other sharp drops in the inaccessible fract
the most prominent occur atk520.61,20.414, 0.585, 0.78,
2.50, and 3.17. These occur when an invariant circle is
stroyed, instantaneously opening up a new accessible reg
The newly opened region will be ‘‘large’’ if the critical circle
is just outside a large island chain. For example neak
520.4145 there is a single invariant circle boundingv51/5
island chain~in the range 6/31,v,7/36!. This invariant
circle is destroyed byk520.414, leading to the opening of
new accessible domain, and consequent decrease in me
of the bounded orbits.

VII. CONCLUSIONS

We have shown that the average exit time from a reg
is given exactly by the ratio of the area of the accessi
portion of the region to the area of the exit set in Eq.~11!. It
is interesting that this provides a justification for the oft us
estimate that an ‘‘escape rate’’ from a region is given by
inverse of this ratio. We use Eq.~11! to provide a nice nu-
merical tool for computing the measure of the bounded or
for the Hénon map. Unfortunately, computational resourc
limit our accuracy in this calculation to a relative measure
about 1023.

For the future, it would be inviting to apply Eq.~11! to
study the bounded orbits for higher dimensional maps,
example Moser’s canonical form for the quadratic sympl
tic map.29 Such maps have important applications to parti
accelerators.

e
r

FIG. 11. One of the islands around a period three orbit atk51.25, the period
tripling point of the Hénon map. Plot bounds are~21.51,20.597!3~21.48,
20.375!.
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