ERRATA AND ADDITIONS: SECOND EDITION

May, 2005

COMPLEX VARIABLES, INTRODUCTION AND APPLICATIONS

M. Ablowitz and A. Fokas Cambridge University Press, 2003

Corrections and small additions; asterisks (*) indicate more important corrections

p.8 Problem 4. Spelling: change: "Estabilish" to "Establish"

p. 34 An Alternative form to Theorem 2.1.1:

Theorem 2.1.1 If the function f(z) = u(x, y) + iv(x, y) is differentiable at a point z = x + iyof a region in the complex plane, then u, v satisfy the Cauchy-Riemann conditions (Eq. (2.1.4)) at z = x + iy. If u_x, u_y, v_x, v_y are continuous and satisfy the Cauchy-Riemann conditions at z = x + iy then f'(z) exists.

p.48 4 lines from top, replace "On the other hand, if we took.." by "On the other hand we reiterate, if we took.."

p.99 3 lines from top. Replace: "If f is a differentiable function..." by "If f is a continuously differentiable function..."

(on same page) In Theorem 2.6.7: change: "... bounded by a simple closed contour C, then at any interior point z" to "... bounded by a simple closed contour C, and if f is continuous on C, then at any interior point z"

p.113 Line 3 change: "Theboundedness..." to "The boundedness..."

(on same page) In the two equations following line 3, change: " $|b_1(z)| < B$ hence $|b_n(z)| < BM^{n-1}$ " to " $|b_1(z)| \le B$ hence $|b_n(z)| \le BM^{n-1}$ "

p.114 Problem 5b replace $R < |Rez| \le 1$ by $R < Rez \le 1$

p.145 In Example 3.5.2 replace "Describe the singularities of the function" by "Describe the singularity of the function at z = 0"

p.148 3 lines above Eq. (3.5.5) after "... $f(z) \to 0$ as $r \to 0$." add: "Also for $\theta = \pm \pi/2, |f(z)| = 1$."

(on same page) 2 lines above Eq. (3.5.5) change "... namely, $r = (1/R) \cos \theta$ (i.e the points..." to "... namely, $r = (1/R) \cos \theta$, $R \neq 0$, (i.e., the points..."

(on same page) last two lines, change: "Thus |f(z)| may take on any positive value other than zero by the appropriate choice of R" to "Thus |f(z)| may take on any positive value in the neighborhood of z = 0".

p.181 In Theorem 3.7.3: change: "... simply connected domain D, then the linear..." to "... simply connected domain D containing z_0 , then the linear..."

p.185 line after Eq. (3.7.41), before: " $(z = 0 \text{ can be translated to } z = z_0 \text{ if we wish})$ " insert: " $z \neq 0, \omega_{m,n}$ "

(on same page) line after Eq. (3.7.43), before "The function ..." insert: "Alternatively, by taking the derivative of Eq.(3.7.42) w satisfies " $w'' = 6w^2 - \frac{g_2}{2}$ ".

p.186 line immediately after Eq. (3.7.45) insert (no new paragraph): "Also note that w_1 satisfies the second order ODE $w_1'' = 2k^2w_1^3 - (1+k^2)w_1$."

p.198 2nd line above Example 3.8.2 change "... time T with ..." to "... distance with \dots "

Section 4.1 Take care to note that the contours C_j are to be distinguished from the Laurent coefficients C_j . In most places it is clear. One can replace the contours C_j by $C_{|}$ esp. on p. 207,208 to be clear.

p.206 3 lines from bottom replace "...contour lying in D." by "...contour lying in D enclosing z_0 ."

p.212 One can eliminate the equation number (4.1.14) (but do not eliminate the equation).

p.257 Problem 14, 3rd line, change: "... where C_R is the ... " to "... where C_R is the outside part of the ... "

p.258 Problem 14, part (c) change the sign of the right hand side: from "= πb_{n+2} " to "= $-\pi b_{n+2}$ "

p.266 problem 6. Change the last two lines from: "Consider the two functions $-f_0$ and

 $f(z) - f_0$, and use ... to deduce that $f(z) = f_0$ " to: "Consider the two functions $-f_0$ and f(z). Then Rouché's Theorem implies that the functions $-f_0$, $f(z) - f_0$ have the same number of zeroes."

p.268 line 10-11-12 from top, omit: "(sometimes referred to as bounded mean oscillations (BMO))"; also omit "(i.e. in BMO)" in the following line.

p.270 In Eq. (4.5.10) the term $\delta(x - x_0)$ in the second integral (which has a $\lim_{\epsilon \to 0}$) should be replaced by $\Delta(x - x_0; \epsilon)$

p.272 In Eq. (4.5.17) middle line replace $e^{ikx'}g(x')$ by $e^{-ikx'}g(x')$

(on same page) 2 lines after Eq. (4.5.18) replace $f(x) = \delta(x - x')$ by $f(x) = \delta(x)$; then in the 3rd line of the following paragraph replace "... evaluating Eq. (4.5.17) at x = 0: " by "..evaluating Eq. (4.5.18) at x = 0: "

p.563 First equation in 2nd paragraph for $\Phi(k)$. Inside integral (add a left parens.): change $\frac{f(l)}{X^+(l)l-k}$ to $\frac{f(l)}{X^+(l)(l-k)}$