Background

» Ever since Stokes' famous 120° cusp conjecture, there has
been great interest in traveling wave solutions of the water
wave equations.

» In 1972, Fenton used complex-variable techniques to study
Stokes’ wave of maximum height.

» To do so, he obtained a series
n(x) = m(x) + ena(x) + - + €¥n9(x) + O(e'°)

where 7); = Z{Zl Ajsech? (x).
» Question: Can one do something similar to study traveling
water waves in (2+1) dimensions (with surface tension)?

» Is there a wave of maximum depth in (241) dimensions?
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» Main obstacle: Can't use complex variables in (2+1)
dimensions.

» Solution: Use the reformulation of full water waves given by
Ablowitz, Fokas, and Musslimani (2006) in terms of 1 and
q = p(x,n).

» Reformulation fixes the domain.

» Reformulation involves Bernoulli's equation, and a new
nonlocal equation of Fourier type.
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Non-dimensionalized AFM System

» Nonlocal equation, valid for all k = (kg, k2) € R?

/ e cosh(|k|(en + 1)) dx =
R2

l/ eik-xsmh(|k|(€77+ 1)) (k X v) qu
K JR2 ||

where |k| = \/k? + 72k3

» Bernoulli's equation for g(x,y, t) = ¢(x, y,n(x,y, t), t)

1 (nt+Vgq- Vn)2 o Vn
— V4 2_|_ _ =—V | ——
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» Want to study traveling wave solutions of AFM system
> Llet X =x—cxtand Y =y — cyt.
> Take 2 =72 =«

» One may express AFM system in terms of variables (X, Y).
For example, nonlocal equation becomes:

— /R2 e'** cosh <\/k12 + €2k2 (en + 1)> (cxnx + cyny) dx =
; sinh (,/klz—i—erzz (en—l—l))

L gikex

Ve Jre /K2 + 42

(k-V)gdx
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» Want: Asymptotic series

g~ qo+eq+eqgt...
ne~Mn+en+em+ ...

» Strategy: Use Poincare-Stokes method.

> Let cX:1+ecX1+e2cX2+... and CyZECy1+€2Cy2+...
where the Cx; and cy; are unknowns to be solved for.

» From AFM system, can use Mathematica to derive equations
for g;:

KP(go) = 0
Lq_] = F_](q07 '7qj71)7j = 1727"‘7

where L is a linear fourth-order PDE with non-constant
coefficients

» Once have g, also have n = n0(q) + eni(q) + - . .

Terry Haut Traveling Water Waves in Three Dimensions



To obtain main equations

KP(q0) =0
qu = Fj(qo,...,qul),j: 1,2,...

for qo, g1, and g2 (say) we do following:
» Expand Bernoulli equation in ¢, neglecting terms of order
O(e?)
» Use above to express n in terms of q:
1 =10(q) + en(q) + n2(q) + O(€)

» Expand the nonlocal equation in €, neglecting terms of order
O(€3), and take Fourier transform of result

> Put in n =n0(q) + en1(q) + €2n2(q) + O(€3) into expanded
nonlocal equation to get equation for g only

> Finally, use ansatz g ~ qo + €q1 + €2qa + O(€3) for g to get
final equations for g;
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» In 1-D, equations reduce to

KdV/(10) = 0
qu = /:j(no,...,njfl),_j: 1,2,...

» One may solve these equations analytically for
n = Y24_; Ajsech)(x) and for the speeds ¢; in terms of an
arbitrary parameter «.

» By normalizing appropriately and taking o = 0, we checked
that our series for 17 and speed ¢ (in terms of €) agree with
Fenton's

» In 2-D, don’t know how to find analytic solutions to equations

» Therefore, must

1. find a way to determine speeds cy, and cx;, j = 1,2,...
2. once determine speeds, solve for g;'s iteratively using numerics
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» Recall that want to solve
KP(0) = 0
qu = Fj(qu ceey qj—l)vj = 17 27 s
» KP(qo) = 0 satisfied by lump solution
_1
3203 (X (0= 1) —2v3Yas) (0 - 1)

2
48Y204 +4 (X (7~ 1) ~2v3Yau) +1

if speeds cy, and cx, chosen correctly as functions of oy and
a

» By assuming that g ~ lump solution as X2 + Y2 — oo, can
get cx, = cx;(a1,a2) and cy; = cy;(a1, a2).

» Now have three free parameters: a1, ap, and €. Correspond
to u, v and € of original non-dimensionalization.

» All that remains: use numerics to solve sequence of PDEs
iteratively.
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To solve PDEs Lq; = Fi(qo) and Lgx = F2(qo, g1), do:
» Fix o1 and oo
» Truncate domain to (—a, a) x (—a, a) and use 6th order
equispaced FD stencil with periodic boundary conditions
» Once have approximate grid values for g1, approximate
derivatives g{(™") (X, Y) that occur in F»(qo, q1) as follows:

1. Take (modified) FFT of grid data that approximate function ¢;
2. Multiply result pointwise by matrices (—iwx)™(—iwy)", where
wx,, = —7/a(=N/2 + p) and wy, = —m/a(—=N/2 + q)

3. Take (modified) inverse FFT of result

» Use this to approximate F2(qo, g1), and solve Lg; = F1(qo)
for go
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» So, when we fix values for a1 and a», we
1. Have values for the speeds cx and cy (to order O(¢?))
2. Have potential g = qo + €q1 + €2go, valid to order O(€?)
3. We then can get n = g + €1 + 2>
4. Choose € such that max|ny + €1 + €2np| =1
» With above choice, € is the non-dimensional maximum
amplitude of 7.

» As oy and aj vary, we can get the speed/amplitude
relationship for water waves (to order O(e?))

» Question to be answered: In above normalization, as € goes to
1, dimensional 17 approaches bottom boundary. What happens
to numerical solution? Can there be a lump-type solution that
gets arbitrarily close to the bottom?
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