
Background

I Ever since Stokes’ famous 120◦ cusp conjecture, there has
been great interest in traveling wave solutions of the water
wave equations.

I In 1972, Fenton used complex-variable techniques to study
Stokes’ wave of maximum height.

I To do so, he obtained a series

η(x) = η1(x) + εη2(x) + · · ·+ ε9η9(x) + O(ε10)

where ηj =
∑j

i=1 Aijsech
2i (x).

I Question: Can one do something similar to study traveling
water waves in (2+1) dimensions (with surface tension)?

I Is there a wave of maximum depth in (2+1) dimensions?
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I Main obstacle: Can’t use complex variables in (2+1)
dimensions.

I Solution: Use the reformulation of full water waves given by
Ablowitz, Fokas, and Musslimani (2006) in terms of η and
q ≡ ϕ(x , η).

I Reformulation fixes the domain.

I Reformulation involves Bernoulli’s equation, and a new
nonlocal equation of Fourier type.
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Non-dimensionalized AFM System

I Nonlocal equation, valid for all k = (k1, k2) ∈ R2∫
R2

e ik·x cosh(|k|(εη + 1))ηt dx =

i

µ

∫
R2

e ik·x sinh(|k|(εη + 1))

|k|
(k · ∇) q dx

where |k| ≡
√

k2
1 + γ2k2

2

I Bernoulli’s equation for q(x , y , t) ≡ ϕ(x , y , η(x , y , t), t)

qt −
1

2
|∇q|2 + gη− (ηt +∇q · ∇η)2

2 (1 + |∇η|2)
=

σ

ρ′
∇·

(
∇η√

1 + |∇η|2

)
(1)
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I Want to study traveling wave solutions of AFM system

I Let X = x − cX t and Y = y − cY t.

I Take µ2 = γ2 = ε

I One may express AFM system in terms of variables (X ,Y ).
For example, nonlocal equation becomes:

−
∫

R2

e ikX cosh

(√
k2
1 + ε2k2

2 (εη + 1)

)
(cXηX + cY ηY ) dx =

i√
ε

∫
R2

e ik·X
sinh

(√
k2
1 + ε2k2

2 (εη + 1)

)
√

k2
1 + ε2k2

2

(k · ∇) q dx
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I Want: Asymptotic series

q ∼ q0 + εq1 + ε2q2 + . . .

η ∼ η0 + εη1 + εη2 + . . .

I Strategy: Use Poincare-Stokes method.

I Let cX = 1 + εcX1 + ε2cX2 + . . . and cY = εcY1 + ε2cY2 + . . .
where the cXj

and cYj
are unknowns to be solved for.

I From AFM system, can use Mathematica to derive equations
for qj :

KP(q0) = 0

Lqj = Fj(q0, . . . , qj−1), j = 1, 2, . . . ,

where L is a linear fourth-order PDE with non-constant
coefficients

I Once have q, also have η = η0(q) + εη1(q) + . . .
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To obtain main equations

KP(q0) = 0

Lqj = Fj(q0, . . . , qj−1), j = 1, 2, . . .

for q0, q1, and q2 (say) we do following:

I Expand Bernoulli equation in ε, neglecting terms of order
O(ε3)

I Use above to express η in terms of q:
η = η0(q) + εη1(q) + ε2η2(q) + O(ε3)

I Expand the nonlocal equation in ε, neglecting terms of order
O(ε3), and take Fourier transform of result

I Put in η = η0(q) + εη1(q) + ε2η2(q) + O(ε3) into expanded
nonlocal equation to get equation for q only

I Finally, use ansatz q ∼ q0 + εq1 + ε2q2 + O(ε3) for q to get
final equations for qj
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I In 1-D, equations reduce to

KdV(η0) = 0

Lqj = Fj(η0, . . . , ηj−1), j = 1, 2, . . .

I One may solve these equations analytically for
ηj =

∑j
i=1 Aijsech

(2i)(x) and for the speeds cj in terms of an
arbitrary parameter α.

I By normalizing appropriately and taking σ = 0, we checked
that our series for η and speed c (in terms of ε) agree with
Fenton’s

I In 2-D, don’t know how to find analytic solutions to equations
I Therefore, must

1. find a way to determine speeds cYj and cXj , j = 1, 2, . . .
2. once determine speeds, solve for qj ’s iteratively using numerics
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I Recall that want to solve

KP(q0) = 0

Lqj = Fj(q0, . . . , qj−1), j = 1, 2, . . .

I KP(q0) = 0 satisfied by lump solution

−
32α2

2

(
X
(
σ − 1

3

)− 1
4 − 2

√
3Y α1

) (
σ − 1

3

)3/4

48Y 2α4
2 + 4

(
X
(
σ − 1

3

)− 1
4 − 2

√
3Y α1

)2

+ 1

if speeds cY0 and cX0 chosen correctly as functions of α1 and
α2

I By assuming that q ∼ lump solution as X 2 + Y 2 →∞, can
get cXj

= cXj
(α1, α2) and cYj

= cYj
(α1, α2).

I Now have three free parameters: α1, α2, and ε. Correspond
to µ, γ and ε of original non-dimensionalization.

I All that remains: use numerics to solve sequence of PDEs
iteratively.
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To solve PDEs Lq1 = F1(q0) and Lq2 = F2(q0, q1), do:

I Fix α1 and α2

I Truncate domain to (−a, a)× (−a, a) and use 6th order
equispaced FD stencil with periodic boundary conditions

I Once have approximate grid values for q1, approximate
derivatives q(m,n)(X ,Y ) that occur in F2(q0, q1) as follows:

1. Take (modified) FFT of grid data that approximate function q1

2. Multiply result pointwise by matrices (−iωX )m(−iωY )n, where
ωXpq = −π/a(−N/2 + p) and ωYpq = −π/a(−N/2 + q)

3. Take (modified) inverse FFT of result

I Use this to approximate F2(q0, q1), and solve Lq1 = F1(q0)
for q2
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I So, when we fix values for α1 and α2, we

1. Have values for the speeds cX and cY (to order O(ε2))
2. Have potential q = q0 + εq1 + ε2q2, valid to order O(ε2)
3. We then can get η = η0 + ε1 + ε2η2

4. Choose ε such that max |η0 + ε1 + ε2η2| = 1

I With above choice, ε is the non-dimensional maximum
amplitude of η.

I As α1 and α2 vary, we can get the speed/amplitude
relationship for water waves (to order O(ε2))

I Question to be answered: In above normalization, as ε goes to
1, dimensional η approaches bottom boundary. What happens
to numerical solution? Can there be a lump-type solution that
gets arbitrarily close to the bottom?
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