- Ever since Stokes' famous 120° cusp conjecture, there has been great interest in traveling wave solutions of the water wave equations.
- In 1972, Fenton used complex-variable techniques to study Stokes' wave of maximum height.
- To do so, he obtained a series

$$\eta(x) = \eta_1(x) + \epsilon \eta_2(x) + \dots + \epsilon^9 \eta_9(x) + O(\epsilon^{10})$$

where $\eta_j = \sum_{i=1}^j A_{ij} \operatorname{sech}^{2i}(x)$.

- Question: Can one do something similar to study traveling water waves in (2+1) dimensions (with surface tension)?
- ▶ Is there a wave of maximum depth in (2+1) dimensions?

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Main obstacle: Can't use complex variables in (2+1) dimensions.
- Solution: Use the reformulation of full water waves given by Ablowitz, Fokas, and Musslimani (2006) in terms of η and $q \equiv \varphi(x, \eta)$.
- Reformulation fixes the domain.
- Reformulation involves Bernoulli's equation, and a new nonlocal equation of Fourier type.

向下 イヨト イヨト

Non-dimensionalized AFM System

▶ Nonlocal equation, valid for all $k = (k_1, k_2) \in \mathbf{R}^2$

$$\int_{\mathbf{R}^2} e^{ik \cdot x} \cosh(|k|(\epsilon \eta + 1))\eta_t \, dx =$$
$$\frac{i}{\mu} \int_{\mathbf{R}^2} e^{ik \cdot x} \frac{\sinh(|k|(\epsilon \eta + 1))}{|k|} \, (k \cdot \nabla) \, q \, dx$$

where
$$|k| \equiv \sqrt{k_1^2 + \gamma^2 k_2^2}$$

▶ Bernoulli's equation for $q(x, y, t) \equiv \varphi(x, y, \eta(x, y, t), t)$

$$q_t - \frac{1}{2} |\nabla q|^2 + g\eta - \frac{(\eta_t + \nabla q \cdot \nabla \eta)^2}{2(1 + |\nabla \eta|^2)} = \frac{\sigma}{\rho'} \nabla \cdot \left(\frac{\nabla \eta}{\sqrt{1 + |\nabla \eta|^2}}\right)$$
(1)

Want to study traveling wave solutions of AFM system

• Let
$$X = x - c_X t$$
 and $Y = y - c_Y t$.

• Take
$$\mu^2 = \gamma^2 = \epsilon$$

One may express AFM system in terms of variables (X, Y).
 For example, nonlocal equation becomes:

$$-\int_{\mathbf{R}^{2}} e^{ikX} \cosh\left(\sqrt{k_{1}^{2} + \epsilon^{2}k_{2}^{2}} (\epsilon\eta + 1)\right) (c_{X}\eta_{X} + c_{Y}\eta_{Y}) dx =$$

$$\frac{i}{\sqrt{\epsilon}} \int_{\mathbf{R}^{2}} e^{ik \cdot X} \frac{\sinh\left(\sqrt{k_{1}^{2} + \epsilon^{2}k_{2}^{2}} (\epsilon\eta + 1)\right)}{\sqrt{k_{1}^{2} + \epsilon^{2}k_{2}^{2}}} (k \cdot \nabla) q dx$$

向下 イヨト イヨト

3

Want: Asymptotic series

$$q \sim q_0 + \epsilon q_1 + \epsilon^2 q_2 + \dots$$

 $\eta \sim \eta_0 + \epsilon \eta_1 + \epsilon \eta_2 + \dots$

- Strategy: Use Poincare-Stokes method.
- ▶ Let $c_X = 1 + \epsilon c_{X_1} + \epsilon^2 c_{X_2} + \dots$ and $c_Y = \epsilon c_{Y_1} + \epsilon^2 c_{Y_2} + \dots$ where the c_{X_i} and c_{Y_i} are unknowns to be solved for.
- From AFM system, can use Mathematica to derive equations for q_j:

$$KP(q_0) = 0$$

 $Lq_j = F_j(q_0, \dots, q_{j-1}), j = 1, 2, \dots,$

where L is a linear fourth-order PDE with non-constant coefficients

• Once have q, also have $\eta = \eta_0(q) + \epsilon \eta_1(q) + \dots$

(日本) (日本) (日本)

æ

To obtain main equations

$$\mathcal{KP}(q_0) = 0$$

 $Lq_j = F_j(q_0, \dots, q_{j-1}), j = 1, 2, \dots$

for q_0 , q_1 , and q_2 (say) we do following:

- Expand Bernoulli equation in *ε*, neglecting terms of order O(ε³)
- Use above to express η in terms of q: $\eta = \eta_0(q) + \epsilon \eta_1(q) + \epsilon^2 \eta_2(q) + O(\epsilon^3)$
- Expand the nonlocal equation in *ε*, neglecting terms of order O(*ε*³), and take Fourier transform of result
- Put in η = η₀(q) + εη₁(q) + ε²η₂(q) + O(ε³) into expanded nonlocal equation to get equation for q only
- ► Finally, use ansatz q ~ q₀ + εq₁ + ε²q₂ + O(ε³) for q to get final equations for q_j

- 사례가 사용가 사용가 구용

In 1-D, equations reduce to

$$\mathsf{KdV}(\eta_0) = 0$$

 $Lq_j = F_j(\eta_0, \dots, \eta_{j-1}), j = 1, 2, \dots$

- One may solve these equations analytically for $\eta_j = \sum_{i=1}^{j} A_{ij} \operatorname{sech}^{(2i)}(x)$ and for the speeds c_j in terms of an arbitrary parameter α .
- By normalizing appropriately and taking σ = 0, we checked that our series for η and speed c (in terms of ε) agree with Fenton's
- In 2-D, don't know how to find analytic solutions to equations
- Therefore, must
 - 1. find a way to determine speeds c_{Y_j} and c_{X_j} , j = 1, 2, ...
 - 2. once determine speeds, solve for q_j 's iteratively using numerics

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that want to solve

$$KP(q_0) = 0$$

 $Lq_j = F_j(q_0, \dots, q_{j-1}), j = 1, 2, \dots$

• $KP(q_0) = 0$ satisfied by lump solution

$$-\frac{32\alpha_{2}^{2}\left(X\left(\sigma-\frac{1}{3}\right)^{-\frac{1}{4}}-2\sqrt{3}Y\alpha_{1}\right)\left(\sigma-\frac{1}{3}\right)^{3/4}}{48Y^{2}\alpha_{2}^{4}+4\left(X\left(\sigma-\frac{1}{3}\right)^{-\frac{1}{4}}-2\sqrt{3}Y\alpha_{1}\right)^{2}+1}$$

if speeds c_{Y_0} and c_{X_0} chosen correctly as functions of α_1 and α_2

- ▶ By assuming that $q \sim \text{lump solution as } X^2 + Y^2 \rightarrow \infty$, can get $c_{X_j} = c_{X_j}(\alpha_1, \alpha_2)$ and $c_{Y_j} = c_{Y_j}(\alpha_1, \alpha_2)$.
- Now have three free parameters: α₁, α₂, and ε. Correspond to μ, γ and ε of original non-dimensionalization.
- All that remains: use numerics to solve sequence of PDEs iteratively.

To solve PDEs $Lq_1 = F_1(q_0)$ and $Lq_2 = F_2(q_0, q_1)$, do:

- Fix α₁ and α₂
- ► Truncate domain to (-a, a) × (-a, a) and use 6th order equispaced FD stencil with periodic boundary conditions
- Once have approximate grid values for q₁, approximate derivatives q^(m,n)(X, Y) that occur in F₂(q₀, q₁) as follows:
 - 1. Take (modified) FFT of grid data that approximate function q_1
 - 2. Multiply result pointwise by matrices $(-i\omega_X)^m(-i\omega_Y)^n$, where $\omega_{X_{nn}} = -\pi/a(-N/2+p)$ and $\omega_{Y_{nn}} = -\pi/a(-N/2+q)$
 - 3. Take (modified) inverse FFT of result
- ► Use this to approximate F₂(q₀, q₁), and solve Lq₁ = F₁(q₀) for q₂

・ 同 ト ・ ヨ ト ・ ヨ ト

- So, when we fix values for α_1 and α_2 , we
 - 1. Have values for the speeds c_X and c_Y (to order $O(\epsilon^2)$)
 - 2. Have potential $q = q_0 + \epsilon q_1 + \epsilon^2 q_2$, valid to order $O(\epsilon^2)$
 - 3. We then can get $\eta = \eta_0 + \epsilon_1 + \epsilon^2 \eta_2$
 - 4. Choose ϵ such that max $|\eta_0 + \epsilon_1 + \epsilon^2 \eta_2| = 1$
- With above choice, ϵ is the non-dimensional maximum amplitude of η .
- As α₁ and α₂ vary, we can get the speed/amplitude relationship for water waves (to order O(ε²))
- Question to be answered: In above normalization, as ε goes to 1, dimensional η approaches bottom boundary. What happens to numerical solution? Can there be a lump-type solution that gets arbitrarily close to the bottom?

・ 同 ト ・ ヨ ト ・ ヨ ト