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Mode–locked lasers

■ Typical optical oscillators that require amplification and loss.
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Mode–locked lasers

■ Typical optical oscillators that require amplification and loss.
■ Amplification is provided by stimulated emission in a gain

medium.
■ Damping is provided by the laser cavity, which is a set of

mirrors that cause light to reflect on itself.
■ Mode–locking: A frequency domain description of how ultra

short pulses are generated by the laser.
■ Schematic diagram of the elements present in a

mode–locked laser.

Gain Dispersion

Output

Coupler

Cavity

Non-Linearity
Output pulse train

Sat. Abs.

Mirror

(High reflector)
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Ti:Sapphire laser

The mechanism of the laser.

■ Pump: The pump emits
green light from either an
Ar

+ laser or
diode–pumped solid state
laser.
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The mechanism of the laser.

■ Pump: The pump emits
green light from either an
Ar

+ laser or
diode–pumped solid state
laser.

■ Crystal: Provides gain and
is the nonlinear material
for mode locking.

■ Prism pair: Compensate
for the group velocity
dispersion in the gain
crystal.

pump 

pulse train

prism pair

2mm

Ti:sapphire crystal

Finally, part of the beam returns to complete the cycle and part is the
output and the process is repeated.
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Advantages and disadvantages

■ Enormous gain bandwidth: Typically extending from 700 to
1000nm (lasing can be achieved well beyond 1000nm).
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■ Easy mode–locking: The Ti:Sapphire crystal provides the
mode–locking mechanism due to the Kerr effect (nonlinear
index of refraction).

■ Mode–locking is essentially instantaneous.
■ Disadvantage: The laser is not self–starting and requires a

critical misalignment (very complicated mechanism, see
below!).
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■ Transform the equation into Fourier domain.
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Spectral Renormalization

Basic ideas:
■ Transform the equation into Fourier domain.
■ Determine a nonlinear nonlocal integral equation coupled to

an algebraic equation.
■ This coupling is crucial. It prevents the numerical scheme

from diverging.
■ Determine the mode from a convergent fixed point iteration

scheme.
■ The essence of the method is the constant balance between

dispersion and nonlinearity.
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Spectral Renormalization in detail

For simplicity consider the 2D model:

i
∂ψ

∂z
+ ∇2ψ +N(|ψ|2)ψ = 0

where ψ = ψ(x, y, z), ∇2 = ∂2

∂x2 + ∂2

∂y2 , and the function N(|ψ|2)
is an arbitrary function of the intensity |ψ|2.
■ Look for localized modes: ψ(x, y, z) = u(x, y)eiµz, µ ∈ R.
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For simplicity consider the 2D model:

i
∂ψ

∂z
+ ∇2ψ +N(|ψ|2)ψ = 0

where ψ = ψ(x, y, z), ∇2 = ∂2

∂x2 + ∂2

∂y2 , and the function N(|ψ|2)
is an arbitrary function of the intensity |ψ|2.
■ Look for localized modes: ψ(x, y, z) = u(x, y)eiµz, µ ∈ R.
■ Substitute to the original equation

−µu+ ∇2u+N(|u|2)u = 0

■ Define the Fourier transform (FT) of the solution as

û(ωx, ωy) = F {u} =

∫ +∞

−∞

∫ +∞

−∞

u(x, y) ei(ωxx+ωyy) dxdy
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For simplicity consider the 2D model:

i
∂ψ

∂z
+ ∇2ψ +N(|ψ|2)ψ = 0

where ψ = ψ(x, y, z), ∇2 = ∂2

∂x2 + ∂2

∂y2 , and the function N(|ψ|2)
is an arbitrary function of the intensity |ψ|2.
■ Take the FT of the equation

−(µ+ |ω|2)û+ F{N(|u|2)u} = 0

■ Introduce the renormalization constant

u(x, y) = λv(x, y) ⇔ û(ωx, ωy) = λv̂(ωx, ωy)
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∂x2 + ∂2

∂y2 , and the function N(|ψ|2)
is an arbitrary function of the intensity |ψ|2.
■ Multiply by v̂∗ and integrate over the entire space (ωx, ωy) to

find the algebraic relation

−
∫ +∞

−∞

(µ+ |ω|2)|v̂|2 dω +

∫ +∞

−∞

F{N(|λv|2)v}v̂∗ dω = 0
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Spectral Renormalization in detail

For simplicity consider the 2D model:

i
∂ψ

∂z
+ ∇2ψ +N(|ψ|2)ψ = 0

where ψ = ψ(x, y, z), ∇2 = ∂2

∂x2 + ∂2

∂y2 , and the function N(|ψ|2)
is an arbitrary function of the intensity |ψ|2.
■ Multiply by v̂∗ and integrate over the entire space (ωx, ωy) to

find the algebraic relation

−
∫ +∞

−∞

(µ+ |ω|2)|v̂|2 dω +

∫ +∞

−∞

F{N(|λv|2)v}v̂∗ dω = 0

■ The solution is obtained by iterating as follows

v̂n+1(ω) =
F{N(|λnvn|2)vn}

µ+ |ω|2
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Final Comments

■ This iteration is for n > 0. When n = 0 an initial guess is
required, say a Gaussian or a sech x, that resembles the
properties of the required solution.
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Final Comments

■ This iteration is for n > 0. When n = 0 an initial guess is
required, say a Gaussian or a sech x, that resembles the
properties of the required solution.

■ When µ < 0 dividing by µ+ |ω|2 may result in zeros in the
denominator thus causing the iterative scheme to fail to
converge. To overcome this add and subtract the term rv(x)
with r > 0 determining the renormalization constant λ is not
affected and the iterative scheme becomes

v̂n+1(ω) =
|µ| + r

r + |ω|2 v̂n − F{N(|λnvn|2)vn}
r + |ω|2
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properties of the required solution.

■ When µ < 0 dividing by µ+ |ω|2 may result in zeros in the
denominator thus causing the iterative scheme to fail to
converge. To overcome this add and subtract the term rv(x)
with r > 0 determining the renormalization constant λ is not
affected and the iterative scheme becomes

v̂n+1(ω) =
|µ| + r

r + |ω|2 v̂n − F{N(|λnvn|2)vn}
r + |ω|2

■ The method converges for arbitrary nonlinearities.
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Final Comments

■ This iteration is for n > 0. When n = 0 an initial guess is
required, say a Gaussian or a sech x, that resembles the
properties of the required solution.

■ When µ < 0 dividing by µ+ |ω|2 may result in zeros in the
denominator thus causing the iterative scheme to fail to
converge. To overcome this add and subtract the term rv(x)
with r > 0 determining the renormalization constant λ is not
affected and the iterative scheme becomes

v̂n+1(ω) =
|µ| + r

r + |ω|2 v̂n − F{N(|λnvn|2)vn}
r + |ω|2

■ The method converges for arbitrary nonlinearities.
■ So far, the method can only converge for the ground states.

Higher modes can not be found.
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Examples: Vanishing boundary conditions

Consider the 1D nonlinear Schrödinger equation (NLS)

iψz + ψtt + 2|ψ|2ψ = 0

ψ(−∞) = ψ(+∞) = 0

■ Look for localized modes: ψ(z, x) = u(x)eiµz, µ ∈ R
+.
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iψz + ψtt + 2|ψ|2ψ = 0

ψ(−∞) = ψ(+∞) = 0

■ Look for localized modes: ψ(z, x) = u(x)eiµz, µ ∈ R
+.

■ Substitute to the original equation

−µu+ utt + 2|u|2u = 0
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Examples: Vanishing boundary conditions

Consider the 1D nonlinear Schrödinger equation (NLS)

iψz + ψtt + 2|ψ|2ψ = 0

ψ(−∞) = ψ(+∞) = 0

■ Look for localized modes: ψ(z, x) = u(x)eiµz, µ ∈ R
+.

■ Substitute to the original equation

−µu+ utt + 2|u|2u = 0

■ Take FT of the equation

−(µ+ ω2)û+ 2F
{

|u|2u
}

= 0
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Examples: Vanishing boundary conditions

Consider the 1D nonlinear Schrödinger equation (NLS)

iψz + ψtt + 2|ψ|2ψ = 0

ψ(−∞) = ψ(+∞) = 0

■ Renormalize according to

u = λv ⇔ û = λv̂
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Examples: Vanishing boundary conditions

Consider the 1D nonlinear Schrödinger equation (NLS)

iψz + ψtt + 2|ψ|2ψ = 0

ψ(−∞) = ψ(+∞) = 0

■ Renormalize according to

u = λv ⇔ û = λv̂

■ Multiply by v̂∗ to obtain the algebraic equation for λ
∫ +∞

−∞

(µ+ ω2)|v̂n|2dω − 2

∫ +∞

−∞

F{|λnvn|2vn}v̂∗n dω = 0
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Examples: Vanishing boundary conditions

Consider the 1D nonlinear Schrödinger equation (NLS)

iψz + ψtt + 2|ψ|2ψ = 0

ψ(−∞) = ψ(+∞) = 0

■ Renormalize according to

u = λv ⇔ û = λv̂

■ Multiply by v̂∗ to obtain the algebraic equation for λ
∫ +∞

−∞

(µ+ ω2)|v̂n|2dω − 2

∫ +∞

−∞

F{|λnvn|2vn}v̂∗n dω = 0

■ The iteration scheme is

v̂n+1 = 2
F{|λnvn|2vn}

µ+ ω2
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Solution of the NLS

Assuming v0 = exp(−x2) the solution for µ = 1 is:
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With dashed lines is plotted the initial Gaussian guess.
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Solution of the NLS
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The energy vs. µ diagram. The analytic result is E = 2
√
µ

indistinguishable in the graph.
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Solution of the NLS

The evolution of the soliton solution as obtained from spectral
renormalization.
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Saturable nonlinearity

Consider a more interesting system with saturable nonlinearity

iψz +
1

2
ψtt −

1

1 + |ψ|2ψ = 0

ψ(−∞) = ψ(+∞) = 0

Taking solutions of the form ψ(z, t) = u(t)e−iµz the iteration
scheme is

v̂n+1 =
µ+ r

r + ω2/2
v̂n − 1

r + ω2/2
F

{

vn

1 + |λnvn|2
vn

}

∫ +∞

−∞

(µ− ω2/2)|v̂n|2 dω −
∫ +∞

−∞

F
{

vn

1 + |λnvn|2
}

v̂∗n dω = 0
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Saturable nonlinearity

The soliton solution
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Saturable nonlinearity

and the energy vs. µ graph
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Nonvanishing boundary conditions

Let us consider the NLS equation in the normal regime,

iψz − 1

2
ψtt + |ψ|2ψ = 0

We need to seek solutions of the form

ψ(z, t) = u(t)eiµz+iφ(t)

where u(t) and φ(t) are now real functions of t. Separate real
and imaginary parts to finally obtain for the amplitude

−µu− 1

2
utt +

A2

2u3
+ u3 = 0

where A is a constant.
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Nonvanishing boundary conditions

Differentiate and set ut = v to obtain the equation for v

−µv − 1

2
vtt −

3A2

2u4
v + 3u2v = 0

The iteration scheme is

v = λw, un = λn

(
∫

wn dt+ u∞

)

∫ +∞

−∞

(−µ+ ω2)|ŵn|2 dω−
∫ +∞

−∞

F
{

3A2

2λ4
nu

4
n

wn − 3λ2
nu

2
nwn

}

ŵn
∗ dω = 0

ŵn+1 =
µ+ r

r + ω2/2
ŵn +

F
{

3A2

2λ4u4
n

wn − 3λ2u2
nwn

}

r + ω2/2
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Nonvanishing boundary conditions

With A = 0 we get black solitons
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Nonvanishing boundary conditions

with A 6= 0 we get gray
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Nonvanishing boundary conditions

The evolution of a dark soliton
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The master equation

Haus was the first to derive this equation to model
mode–locked lasers:

iψz + (1 − iτg(z))ψtt + (4 − iβ)|ψ|2ψ + i(γ − g(z))ψ = 0

where

g(z) =
2g0

1 +
∫ +∞

−∞
|ψ|2 dt/e0

The dynamics, solutions and their stability crucially depend on
the values of g0, e0, γ and β.
A perturbative analysis and a special set of solutions for
e0 =

∫ +∞

−∞
|ψ|2 dt was given by Kutz.

Hereafter, e0 = 1, and g0 = τ = γ = 0.1 and we study the
equation for the different values of β.
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Dynamics of the master equation

Stable pulse for 0.01 < β < 0.0348
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Dynamics of the master equation

Evolution of the soliton peak for 0.01 < β < 0.0348
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Dynamics of the master equation

Unstable pulse for β < 0
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Dynamics of the master equation

Evolution of the soliton peak for β < 0
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Dynamics of the master equation

Quasi–periodic evolution for 0 < β < 0.01
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Dynamics of the master equation

Evolution of the soliton peak for 0 < β < 0.01
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Dynamics of the master equation

Blow–up occurs for β > 0.0348
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Dynamics of the master equation

Evolution of the soliton peak for β > 0.0348
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Solutions of the master equation

Using spectral renormalization we derive the following iteration
scheme:

v̂n+1 =
F{−iτGnvn,tt + (4 − iβ)|λnvn|2vn − iGnvn}

µ+ ω2 − iγ
∫ +∞

−∞

(µ+ ω2 − iγ)|v̂n|2 dω =

∫ +∞

−∞

F{−iτGnvn,tt + (4 − iβ)|λnvn|2vn − iGnvn}v̂∗n dω

where

Gn =
2g0

1 +
∫ +∞

−∞
|λnvn|2 dt/e0

Modes, ie solutions to the equation are found for specific
values of µ.
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Solutions of the master equation

Stable pulse for β = 0.034 and µ = 1.955
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Solutions of the master equation

Evolution of the pulse for β = 0.034 and µ = 1.955
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Solutions of the master equation

Evolution of the soliton peak for β = 0.034 and µ = 1.955
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Solutions of the master equation

Evolution of the soliton phase ψ(z) for β = 0.034 and µ = 1.955
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Solutions of the master equation

Evolution of φz(= µ) for β = 0.034 and µ = 1.955
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Solutions of the master equation

Unstable pulse for β = −0.05 and µ = 0.605
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Solutions of the master equation

Evolution of the pulse for β = −0.05 and µ = 0.605
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Solutions of the master equation

Evolution of the soliton peak for β = −0.05 and µ = 0.605

0 200 400 600 800 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

z

|u
m

ax
|



● Contents

● Mode–locked lasers

● Ti:Sapphire laser

● Spectral Renormalization

● Examples: Vanishing

boundary conditions
● Nonvanishing boundary

conditions
● The master equation

● The mode–locking equation

● Dispersion managed solitons

● Conclusions

Theodoros P. Horikis, August 15, 2007 Solitons in mode–locked lasers - p. 27/49

Solutions of the master equation

The pulse for β = 0.005 and µ = 0.933
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Solutions of the master equation

Quasi–periodic solution of the pulse for β = 0.005 and
µ = 0.933
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Solutions of the master equation

Evolution of the soliton peak for β = 0.005 and µ = 0.933

0 2000 4000 6000 8000 10000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z

|u
m

ax
|



● Contents

● Mode–locked lasers

● Ti:Sapphire laser

● Spectral Renormalization

● Examples: Vanishing

boundary conditions
● Nonvanishing boundary

conditions
● The master equation

● The mode–locking equation

● Dispersion managed solitons

● Conclusions

Theodoros P. Horikis, August 15, 2007 Solitons in mode–locked lasers - p. 28/49

Summary

■ The master equation is a phenomenological model that
describes pulse propagation in a laser cavity.
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Summary

■ The master equation is a phenomenological model that
describes pulse propagation in a laser cavity.

■ Mode–locking only occurs for a narrow range of parameters.
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Summary

■ The master equation is a phenomenological model that
describes pulse propagation in a laser cavity.

■ Mode–locking only occurs for a narrow range of parameters.
■ Unstable pulses exist.
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Summary

■ The master equation is a phenomenological model that
describes pulse propagation in a laser cavity.

■ Mode–locking only occurs for a narrow range of parameters.
■ Unstable pulses exist.
■ Blow–up may occur in the evolution of an arbitrary pulse.

Modes that blow–up do not exist.
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The mode–locking equation

Let us now consider the following model for the propagation of
pulses in a laser cavity

iψz +
1

2
ψtt + |ψ|2ψ =

ig

1 + ε
∫ +∞

−∞
|ψ|2 dt

ψ +
iτ

1 + γ
∫ +∞

−∞
|ψ|2 dt

ψtt −
il

1 + δ|ψ|2ψ

where the parameters g, τ , l, ε, γ and δ are all positive, real
constants. The first term on the right hand side represents
saturable gain, the second is nonlinear filtering and the third
saturable loss.
In our analysis we will fix τ = l = 0.1 and ε = γ = δ = 1 and we
will modify the gain parameter g.
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Dynamics of the mode–locking equation

Unstable pulse for g = 0.1
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Dynamics of the mode–locking equation

Stable pulse for g = 0.3
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Dynamics of the mode–locking equation

Evolution of the soliton peak for g = 0.3
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Dynamics of the mode–locking equation

Stable pulse for g = 0.7
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Dynamics of the mode–locking equation

Evolution of the soliton peak for g = 0.7
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Dynamics of the mode–locking equation

Stable pulse for g = 1
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Dynamics of the mode–locking equation

Evolution of the soliton peak for g = 1
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Solutions of the mode–locking equation

Denote

P (t) =
ig

1 + ε
∫ +∞

−∞
|u|2 dt

u+
iτ

1 + γ
∫ +∞

−∞
|u|2 dt

utt −
il

1 + δ|u|2u.

Using spectral renormalization we derive the following iteration
scheme:

∫ +∞

−∞

(µ+ ω2/2)|v̂n|2 dω+

∫ +∞

−∞

(F{Pn(λ, t) − |λnvn|2vn})v̂n
∗ dω = 0

v̂n+1 = −F{Pn(λ, t) − |λnvn|2vn}
µ+ ω2/2

Again, modes, ie solutions to the equation are found for
specific values of µ.
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Solutions of the mode–locking equation

Stable pulse for g = 0.3 and µ = 2.09
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Solutions of the mode–locking equation

Evolution of the pulse for g = 0.3 and µ = 2.09
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Solutions of the mode–locking equation

Evolution of the soliton peak for g = 0.3 and µ = 2.09
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Solutions of the mode–locking equation

Evolution of the soliton phase ψ(z) for g = 0.3 and µ = 2.09
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Solutions of the mode–locking equation

Evolution of φz(= µ) for g = 0.3 and µ = 2.09
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Solutions of the mode–locking equation

Stable pulse for g = 0.7 and µ = 8.83
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Solutions of the mode–locking equation

Evolution of the pulse for g = 0.7 and µ = 8.83
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Solutions of the mode–locking equation

Evolution of the soliton peak for g = 0.7 and µ = 8.83
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Solutions of the mode–locking equation

Solutions for different gain
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Summary

■ Mode–locking occurs for a wide range of parameters.



● Contents

● Mode–locked lasers

● Ti:Sapphire laser

● Spectral Renormalization

● Examples: Vanishing

boundary conditions
● Nonvanishing boundary

conditions
● The master equation

● The mode–locking equation

● Dispersion managed solitons

● Conclusions

Theodoros P. Horikis, August 15, 2007 Solitons in mode–locked lasers - p. 38/49

Summary

■ Mode–locking occurs for a wide range of parameters.
■ There are no unstable modes.
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Summary

■ Mode–locking occurs for a wide range of parameters.
■ There are no unstable modes.
■ Blow up never occurs.
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Summary

■ Mode–locking occurs for a wide range of parameters.
■ There are no unstable modes.
■ Blow up never occurs.
■ All modes are stable in their evolution.
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Dispersion managed solitons

The characteristics of an optical pulse propagating in a
dispersion managed (DM) system under the effect of gain and
loss can be described by the p–NLS equation

i
∂u

∂z
+
d(z)

2

∂2u

∂t2
+ g(z)|u|2u =

ig

1 + ε
∫ +∞

−∞
|u|2 dt

u+
iτ

1 + γ
∫ +∞

−∞
|u|2 dt

utt −
il

1 + δ|u|2u

where u = u(z, t), z, and t are the dimensionless variables
which represent the complex envelope of the electrical field,
longitudinal distance, and retarded time, respectively. The
function d(z) is the local value of fiber dispersion and g(z)
includes the effects of varying power resulting from fiber loss
and periodic amplification. Both factors are real functions of z
with period za, which denotes the DM period and which is
taken equal to the amplifier spacing.
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Dispersion maps

Define

d(z) = d0 +
∆(z/za)

za

, 〈∆〉 =

∫ 1

0

∆(ζ) dζ = 0, ζ =
z

za

.

The parameters of a two-step map as illustrated as follows

d(z)

θ/2

Δ1

amplifier

0
z/za

-θ/2

Δ2
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DMNLS theory outline

■ Define the new variables ζ =
z

za

(short scale), Z = z (long

scale).
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DMNLS theory outline

■ Define the new variables ζ =
z

za

(short scale), Z = z (long

scale).
■ The map strength parameter is defined as

s =
θ∆1 − (1 − θ)∆2

4
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DMNLS theory outline

■ Define the new variables ζ =
z

za

(short scale), Z = z (long

scale).
■ The map strength parameter is defined as

s =
θ∆1 − (1 − θ)∆2

4

■ Expand u in powers of za � 1.
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DMNLS theory outline

■ Define the new variables ζ =
z

za

(short scale), Z = z (long

scale).
■ The map strength parameter is defined as

s =
θ∆1 − (1 − θ)∆2

4

■ Expand u in powers of za � 1.
■ Substitute in the p–NLS equation and equate coefficients of

equal powers of za.
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DMNLS theory outline

■ Define the new variables ζ =
z

za

(short scale), Z = z (long

scale).
■ The map strength parameter is defined as

s =
θ∆1 − (1 − θ)∆2

4

■ Expand u in powers of za � 1.
■ Substitute in the p–NLS equation and equate coefficients of

equal powers of za.
■ Solve the leading order equation of O(z−1

a ) and use the
solution, u(0), to the O(1) equation to derive the DMNLS
equation.
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DMNLS equation

The DMNLS equation has the form

i
∂Û0

∂Z
− d0

2
ω2Û0+

∫ 1

0

exp

[

i
ω2

2
C(ζ)

]

(

g(ζ)F
{

|u(0)|2u(0)
}

+ F
{

P (u(0))
})

dζ = 0

where

û(0)(ζ, Z, ω) = exp

[

−iω
2

2
C(ζ)

]

Û0(Z, ω)

C(ζ) =

∫ ζ

0

∆(ζ ′) dζ ′

Û0(Z, ω) = û(0)(ζ = 0, Z, ω)

This is a partial differential equation for Û0(Z, ω) and describes
the long–scale dynamics of the pulse envelope.
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Dynamics of the DMNLS equation

Weak dispersion management, s = 0.1, and g = 0.3
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Dynamics of the DMNLS equation

Evolution of the soliton peak for s = 0.1 and g = 0.3
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Dynamics of the DMNLS equation

Moderate dispersion management, s = 1, and g = 0.3
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Dynamics of the DMNLS equation

Evolution of the soliton peak for s = 1 and g = 0.3
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Dynamics of the DMNLS equation

Strong dispersion management, s = 10, and g = 0.3
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Dynamics of the DMNLS equation

Evolution of the soliton peak for s = 10 and g = 0.3
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Solution of the DMNLS equation

Moderate dispersion management, s = 1, g = 0.3 and
µ = 1.7487
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Solution of the DMNLS equation

Evolution of the pulse for s = 1, g = 0.3 and µ = 1.7487
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Solution of the DMNLS equation

Evolution of the soliton peak s = 1, g = 0.3 and µ = 1.7487
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Solution of the DMNLS equation

Evolution of the soliton phase s = 1, g = 0.3 and µ = 1.7487
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Solution of the DMNLS equation

Evolution of φZ(= µ) for s = 1, g = 0.3 and µ = 1.7487
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DMSNLS soliton in Log scale

Moderate dispersion management, s = 1, g = 0.3 and
µ = 1.7487
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DMSNLS soliton in Log scale

Evolution of the pulse for s = 1, g = 0.3 and µ = 1.7487
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Summary

■ DMNLS equation is an asymptotic equation that
reassembles the features of the constant dispersion NLS.
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■ Mode–locking occurs for a wider range of parameters.
■ For strong dispersion maps, when the gain parameters

increases the energy also increases so that the equation is
approximate Hamiltonian. A wide range of µ’s can support
near modes.
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Summary

■ DMNLS equation is an asymptotic equation that
reassembles the features of the constant dispersion NLS.

■ Mode–locking occurs for a wider range of parameters.
■ For strong dispersion maps, when the gain parameters

increases the energy also increases so that the equation is
approximate Hamiltonian. A wide range of µ’s can support
near modes.

■ The amplitude also increases with g.
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Conclusions

We presented recent developments in the theory of
mode–locked lasers. A new model equation is proposed for the
study of these systems, that seems to be able to describe all
their physical properties. A numerical method, the spectral
renormalization, is used to find the solutions of this equation
for both constant dispersion and dispersion managed solitons.
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