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Mode—locked lasers

Typical optical oscillators that require amplification and loss.

Amplification is provided by stimulated emission in a gain
medium.

Damping is provided by the laser cavity, which is a set of
mirrors that cause light to reflect on itself.

Mode—locking: A frequency domain description of how ultra
short pulses are generated by the laser.

Schematic diagram of the elements present in a
mode—locked laser.
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The mechanism of the laser.

® Pump: The pump emits
green light from either an
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diode—pumped solid state
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= Crystal: Provides gain and
IS the nonlinear material
for mode locking.
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for the group velocity
dispersion in the gain
crystal.
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Finally, part of the beam returns to complete the cycle and part is the
output and the process is repeated.
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Transform the equation into Fourier domain.

Determine a nonlinear nonlocal integral equation coupled to
an algebraic equation.

This coupling is crucial. It prevents the numerical scheme
from diverging.

Determine the mode from a convergent fixed point iteration
scheme.

The essence of the method is the constant balance between
dispersion and nonlinearity.
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required, say a Gaussian or a sech z, that resembles the
properties of the required solution.

= When p < 0 dividing by p + |w|? may result in zeros in the

denominator thus causing the iterative scheme to fail to
converge. To overcome this add and subtract the term rv(x)
with » > 0 determining the renormalization constant X is not
affected and the iterative scheme becomes
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Final Comments

This iteration is for n > 0. When n = 0 an initial guess is
required, say a Gaussian or a sech z, that resembles the
properties of the required solution.

When p < 0 dividing by i + |w|? may result in zeros in the
denominator thus causing the iterative scheme to fail to
converge. To overcome this add and subtract the term rv(x)
with » > 0 determining the renormalization constant X is not
affected and the iterative scheme becomes

o |+ f{N(ann‘z)vn}

Vpt1(w) = r - ’w’2vn o r+ |w|?

The method converges for arbitrary nonlinearities.

So far, the method can only converge for the ground states.
Higher modes can not be found.
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Examples: Vanishing boundary conditions

Consider the 1D nonlinear Schrddinger equation (NLS)

e + e+ 2% = 0
h(—00) = p(+00) =0
= Renormalize according to
U=A\&S U= A\

= Multiply by ©* to obtain the algebraic equation for A

—+00 400
/ i+ w)onPdw—2 | F{Awon Pog b dw = 0

— 0 — OO

m The iteration scheme is
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The evolution of the soliton solution as obtained from spectral
renormalization.
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Saturable nonlinearity

oomers Consider a more interesting system with saturable nonlinearity
1
— =0
oundary conditions 2
oonv.nihingundary 1 —l_ ‘w‘
o?l'zr;drlrt:ggtserequation ¢<_OO) — ¢<+OO) — O

e The mode—locking equation
e Dispersion managed solitons

» Conclusons Taking solutions of the form (z,t) = u(t)e™*** the iteration
scheme is

e Ti:Sapphire laser
e Spectral Renormalization

1
i+ i

A [LL—I—T A 1 F Un
v e V., — (Y
MR w22 w22 14 Mo, |2 "

+0o0 ) ) +00 U,
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Nonvanishing boundary conditions
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conditions .
e The master equation We need to seek solutions of the form

e The mode—locking equation
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e Conclusions ¢(27 t) — u(t)e’l,/,bz—l—’l,gb(t)

where u(t) and ¢(t) are now real functions of t. Separate real
and imaginary parts to finally obtain for the amplitude

b+ 25—
uu 2utt 2’U,3 u =

where A is a constant.
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The master equation

Haus was the first to derive this equation to model
mode—locked lasers:

i, + (1 —irg(2))¢ue + (4 = iB)[W[*Y +i(y — g(2))y =0
where
- 290
1+ [T w2 dt e
The dynamics, solutions and their stability crucially depend on

the values of g, eg, v and £.
A perturbative analysis and a special set of solutions for

ey = ff;o [4)|? dt was given by Kutz.
Hereafter, e = 1, and go = 7 = v = 0.1 and we study the
equation for the different values of 5.

g9(z)
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Dynamics of the master equation

Stable pulse for 0.01 < 6 < 0.0348

0.8

0.6

|ul

0.4

0.2

1000

200

Solitons in mode—locked lasers - p. 20/49




e Contents

o Mode—locked lasers

e Ti:Sapphire laser

e Spectral Renormalization

e Examples: Vanishing
boundary conditions

e Nonvanishing boundary

conditions
e The master equation

e The mode—locking equation
e Dispersion managed solitons
e Conclusions

Theodoros P. Horikis, August 15, 2007

Dynamics of the master equation

Evolution of the soliton peak for 0.01 < § < 0.0348
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Dynamics of the master equation

Unstable pulse for 3 < 0
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Dynamics of the master equation

Evolution of the soliton peak for 5 < 0
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Dynamics of the master equation

Quasi—periodic evolution for 0 < 8 < 0.01
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Dynamics of the master equation

Evolution of the soliton peak for 0 < 5 < 0.01

1.6

1.4¢

1.2}

maxl

0.2
0

1000

2000

3000

4000

5000

Solitons in mode—locked lasers - p. 22/49




Dynamics of the master equation

» Contents Blow—up occurs for 5 > 0.0348

o Mode—locked lasers

e Ti:Sapphire laser

e Spectral Renormalization

e Examples: Vanishing
boundary conditions

e Nonvanishing boundary

conditions
e The master equation

e The mode—locking equation 2
e Dispersion managed solitons

e Conclusions

A m

s 1 It

Theodoros P. Horikis, August 15, 2007 Solitons in mode—locked lasers - p. 23/49




Dynamics of the master equation
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Solutions of the master equation

Using spectral renormalization we derive the following iteration

scheme:
. F{—itGnvn e + (4 — i) | Apvn|*vn — iGpu, }
U’I”L—I—l — 2 .
P we — 1y
+00
[ et - do -
+00

f{—iTGnUn,tt + <4 — Zﬁ)‘)\nvn‘Qvn - ZGnU’FL}@: dw

— o0

where
290

L+ [T A2 dt /e

Modes, ie solutions to the equation are found for specific
values of L.

G,
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Solutions of the master equation

Stable pulse for 6 = 0.034 and 4 = 1.955
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Solutions of the master equation

Evolution of the pulse for 3 = 0.034 and . = 1.955
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Solutions of the master equation

Evolution of the soliton peak for 5 = 0.034 and ¢ = 1.955
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Solutions of the master equation

Evolution of the soliton phase (z) for 3 = 0.034 and pu = 1.955
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Solutions of the master equation

Unstable pulse for 8 = —0.05 and © = 0.605
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Solutions of the master equation

Evolution of the pulse for 3 = —0.05 and ¢ = 0.605
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Solutions of the master equation

Evolution of the soliton peak for 5 = —0.05 and . = 0.605
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Solutions of the master equation

The pulse for g = 0.005 and . = 0.933
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Solutions of the master equation

Quasi—periodic solution of the pulse for 5 = 0.005 and

1= 0.933
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Solutions of the master equation

Evolution of the soliton peak for 5 = 0.005 and . = 0.933
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Summary

= The master equation is a phenomenological model that

describes pulse propagation in a laser cavity.

= Mode—locking only occurs for a narrow range of parameters.

= Unstable pulses exist.
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Summary

The master equation is a phenomenological model that

describes pulse propagation in a laser cavity.

Mode—locking only occurs for a narrow range of parameters.

Unstable pulses exist.

Blow—up may occur in the evolution of an arbitrary pulse.

Modes that blow—up do not exist.

Solitons in mode—locked lasers - p. 28/49




e Contents

e Mode—locked lasers

e Ti:Sapphire laser

e Spectral Renormalization

e Examples: Vanishing
boundary conditions

e Nonvanishing boundary

conditions
e The master equation

e The mode—locking equation

e Dispersion managed solitons
e Conclusions

Theodoros P. Horikis, August 15, 2007

The mode—locking equation

Let us now consider the following model for the propagation of
pulses in a laser cavity

, 1
1), + §¢tt + |¢|2¢ =
ig iT il

o~ Y+ = Vet — (&
Lde [T22dt T 14y [T )2 dt 140y

where the parameters g, 7, [, €, v and ¢ are all positive, real
constants. The first term on the right hand side represents
saturable gain, the second is nonlinear filtering and the third
saturable loss.

In our analysis we will fix r=[l=0.1ande =~ =6 = 1 and we
will modify the gain parameter g.
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Dynamics of the mode—locking equation

Stable pulse for g = 0.3
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Dynamics of the mode—locking equation

Evolution of the soliton peak for g = 0.3
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Dynamics of the mode—locking equation

Stable pulse for g = 0.7
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Dynamics of the mode—locking equation

Evolution of the soliton peak for g = 0.7
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Dynamics of the mode—locking equation

Stable pulse for g = 1
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Dynamics of the mode—locking equation

Evolution of the soliton peak for g = 1
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Solutions of the mode—locking equation

Denote . _ ’
1g 1T ()
P(t) = u + Upp — U.
Te [Tom2dt 14+ 750 ul? dt 1+ 6ul?
Using spectral renormalization we derive the following iteration
scheme:

+ o0
/ (1 + 0 /2)[6n 2 durt

— OO

+00
/ (FLPoOMLE) — Py on ) dow = 0

— 00

F{P,(\ 1) — [ Apvp|?v,}
pt+w?/2

Un4+1 — —

Again, modes, ie solutions to the equation are found for
specific values of u.
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Dispersion managed solitons

comenis The characteristics of an optical pulse propagating in a
o Ti:Sepphire eses dispersion managed (DM) system under the effect of gain and
e Spectral Renormalization . .
« Exampes varisin loss can be described by the p—NLS equation
boundary conditions
e Nonvanishing boundary
o?l'zr;drirtjggtserequation Z% d(Z) azu _|_ g(z)’u|2u —
0z = 2 08
e Conclusions Zg 7/,7- Zl

= u -+ = Ut — U
L e [T u2dt 14 [0 ul? dt 1+ 0ful?

where u = u(z,t), z, and t are the dimensionless variables
which represent the complex envelope of the electrical field,
longitudinal distance, and retarded time, respectively. The
function d(z) is the local value of fiber dispersion and g(z)
Includes the effects of varying power resulting from fiber loss
and periodic amplification. Both factors are real functions of z
with period z,, which denotes the DM period and which is
taken equal to the amplifier spacing.
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DMNLS theory outline

= Define the new variables ( = Z (short scale), Z = z (long
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The map strength parameter is defined as

Expand « in powers of z, < 1.

Substitute in the p—NLS equation and equate coefficients of
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= Expand u in powers of z, < 1.

= Substitute in the p—NLS equation and equate coefficients of
equal powers of z,.

= Solve the leading order equation of O(z; 1) and use the

solution, «(°), to the O(1) equation to derive the DMNLS
equation.
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The DMNLS equation has the form
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The mode—lo::i:zogquation O

e Conclusions Wh e re

w2

W9(¢, Z,w) = exp [—Z—C(C)] Uo(Z,w)

/ A(C
Uo(Z,w) =09 =0,27 w)

This is a partial differential equation for Uy(Z, w) and describes
the long—scale dynamics of the pulse envelope.
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Dynamics of the DMNLS equation

Weak dispersion management, s = 0.1, and g = 0.3

[N

1000

Solitons in mode—locked lasers - p. 43/49




Dynamics of the DMNLS equation

» Contents Evolution of the soliton peak for s = 0.1 and g = 0.3

o Mode—locked lasers

e Ti:Sapphire laser

e Spectral Renormalization

e Examples: Vanishing 2
boundary conditions

e Nonvanishing boundary

conditions
e The master equation

e The mode—locking equation

e Dispersion managed solitons
e Conclusions

15

Uy2.0)l

"0 200 400 600 800 1000

Theodoros P. Horikis, August 15, 2007 Solitons in mode—locked lasers - p. 43/49




Dynamics of the DMNLS equation

» Contents Moderate dispersion management, s = 1, and g = 0.3

o Mode—locked lasers

e Ti:Sapphire laser

e Spectral Renormalization

e Examples: Vanishing
boundary conditions

e Nonvanishing boundary

conditions
e The master equation

e The mode—locking equation 2
e Dispersion managed solitons
e Conclusions
1.5
_o
=
0.5
0
1000

Theodoros P. Horikis, August 15, 2007 Solitons in mode—locked lasers - p. 44/49




Dynamics of the DMNLS equation

» Contents Evolution of the soliton peak for s =1 and g = 0.3

o Mode—locked lasers

e Ti:Sapphire laser

e Spectral Renormalization

e Examples: Vanishing 1.8
boundary conditions

e Nonvanishing boundary

conditions
e The master equation 1.6f ]

e The mode—locking equation

e Dispersion managed solitons

e Conclusions

Uy2.0)l

400 600 800 1000

Theodoros P. Horikis, August 15, 2007 Solitons in mode—locked lasers - p. 44/49
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Solution of the DMNLS equation

Evolution of ¢ z(=p) fors =1, g = 0.3 and p = 1.7487

1.75

1.749

1.748

1.747

1.746

9,(2,0)
'_\
\‘
5

1.744

1.743

1.742

1.741

1.74

20

40

60

80

100

Solitons in mode—locked lasers - p. 46/49




e Contents

o Mode—locked lasers

e Ti:Sapphire laser

e Spectral Renormalization

e Examples: Vanishing
boundary conditions

e Nonvanishing boundary

conditions
e The master equation

e The mode—locking equation
e Dispersion managed solitons

e Conclusions

Theodoros P. Horikis, August 15, 2007

DMSNLS soliton in Log scale

Moderate dispersion management, s =1, g = 0.3 and
= 1.7487
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Summary

DMNLS equation is an asymptotic equation that
reassembles the features of the constant dispersion NLS.

Mode—locking occurs for a wider range of parameters.

For strong dispersion maps, when the gain parameters
Increases the energy also increases so that the equation is
approximate Hamiltonian. A wide range of u's can support
near modes.
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Summary

= DMNLS equation is an asymptotic equation that
reassembles the features of the constant dispersion NLS.

= Mode—locking occurs for a wider range of parameters.

= For strong dispersion maps, when the gain parameters
Increases the energy also increases so that the equation is
approximate Hamiltonian. A wide range of u's can support
near modes.

= The amplitude also increases with g.
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Conclusions

We presented recent developments in the theory of
mode—locked lasers. A new model equation is proposed for the
study of these systems, that seems to be able to describe all
their physical properties. A numerical method, the spectral
renormalization, is used to find the solutions of this equation
for both constant dispersion and dispersion managed solitons.
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