
Dynamics and stability of localized
nonlinear waves

in inhomogeneous media

Boaz Ilan

School of Natural Sciences

University of California, Merced



UC Merced



Collaborators

Mark Ablowitz, CU Applied Mathematics
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Lattice systems
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photonics:

optical waveguide arrays (1D)
Photonic Crystal Fibers (PCFs)
optically-induced in photo-refractive crystals

Bose-Einstein condensates

solid state physics

...



Irregular lattices
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point defects (e.g., vacancy)

line defects (e.g., edge-dislocation)

quasicrystal structures (e.g., Penrose quasicrystal)



Fabrication of defects

manipulate defects & dislocations by interference of
plane waves and spiral-phase masks (L ∼ 0.2mm)

Schonbrun and Piestun, Opt. Eng. ’06



Quasi-crystal photonic lattices

Freedman et al. ’06: solitons embedded in photonic
quasicrystals



Localized nonlinear modes

nonlinear Schrödinger (NLS) eq.
iψz + ∆ψ − V (~x)ψ + |ψ|2ψ = 0

look for modes:
ψ(~x, z) = f(~x)e−iµz =⇒ [µ+ ∆ − V (~x) + |f |2]f = 0

f(~x) = real & localized, P :=
∫∫

|f(~x)|2 dxdy <∞

V (~x) ≡ 0 (homogeneous):

“Townes soliton” when µ < 0

collapse in (2+1)D and higher dimensions

periodic V (~x):

band-gaps; localized modes (lattice solitons)
some theory; mostly computational
lattice solitons recently observed in experiments



Computation of solitons

[µ+ ∆ − V (~x) + |f |2]f = 0

fixed-point spectral iterations (Ablowitz and Musslimani,
2005)

f̂(~k) = R̂[f̂ ] ≡
(r + µ)f̂ + F

{

[|f |2 − V (~x)]f
}

r + |~k|2
, r > 0

renormalize: f(~x) = λw(~x). Iterate ŵn+1 = λ−1
n R̂[λnŵn]

coupled algebraic condition:

∫∫ +∞

−∞

|ŵn(ν)|2 dν = λ−1
n

∫∫ +∞

−∞

R̂[λnŵn]ŵ∗

n(ν) dν .



Renormalization method







ŵn+1 = λ−1
n R̂[λnŵn] , n = 1, 2, · · ·

∫∫ +∞

−∞
|ŵn(ν)|2 dν = λ−1

n

∫∫ +∞

−∞
R̂[λnŵn]ŵ∗

n(ν) dν .

initial condition: w0(x, y) = e−[(x−x0)
2+(y−y0)

2]

soln: f(~x) = λw(~x)

convergence:

‖fn+1 − fn‖∞ < 10−10 ,
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usually convergence is reached quickly



Vacancy solitons
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similar to lattice solitons on minimum of potential



Edge-dislocation solitons

V (x, y) =
V0
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µ = 0.5



Penrose solitons (N = 5)

V (x, y) =
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µ = 0.5

on lattice maxima wide solitons have a dimple



Vortex quasicrystal solitons

N = 5 and µ = −2

with Ablowitz, Antar, Bakırtaş, Ilan (in progress)



Dynamics and instabilities



Wave collapse

singularity formation ‖ψ(x, y, z)‖H1

z→Zc→ ∞

in practice singularity occurs at a point: maxx,y |ψ|
z→Zc→ ∞

strictly nonlinear phenomenon

can only occur in (2+1)D and higher dimensions

necessary condition for collapse (Weinstein ’85;
Pacciani and Konotop ’06):
P :=

∫∫

|ψ0(x, y)|
2 ≥ PNLS

c ≈ 11.7

sufficient condition: negative Hamiltonian; generically
not-sharp (e.g., Ablowitz, Bakırtaş, Ilan, Physica D ’05)

conditions apply to any initial conditions



Self-focusing instability

iψz + ∆ψ − V (~x)ψ + |ψ|2ψ = 0

peak amplitude can significantly increase during evolution

self-focusing instability of solitons:

ψ(~x, z) = f(~x)e−iµz, P :=
∫∫

|f(~x)|2

Vakhitov-Kolokolov (VK) criterion: need dP
dµ < 0 for

stability

many studies rely on this criterion, but:
1. only necessary for stability, not sufficient
2. only linear stability, what about collapse?
3. only for modes, not general initial conditions



Stability theory

Let u(x, y) > 0 be soliton)solution. Then the soliton (+ small
perturbation) remains “orbitally stable” during propagation
↔ both of the following conditions apply:

1. slope/power/Vakhitov-Kolokolov condition: ∂P (µ)
∂µ < 0

2. spectral condition: L(V )
+ = −∆ − µ− 3u2(x, y) + V (x, y)

has exactly one negative eigenvalue [λ(V )
1,2 ≥ 0]

Weinstein (’85): proof for pure NLS, i.e, V (x, y) ≡ 0

Floer & Weinstein; Rose & Weinstein; Stuart; Spradlin:
extension of proof to certain potentials; with Weinstein
(in progress): general potentials including irregular
lattices

spectral condition lesser known and studied



Criteria for instabilities

1. slope and spectral conditions are “equally” important in
theorem, but correspond to different instability
mechanisms

2. dP
dµ ≥ 0 =⇒ diffraction/self-focusing

3. λ(V )
1,2 < 0 =⇒ soliton drifts across the lattice

4. “strength” depends on size of dP
dµ and λ(V )

1,2

a λ
(V )
1,2 < 0 ↔ soliton not on a min

b slope & spectral conditions depend location & width

c collapse when P > P
(V )
c ≃ PNLS

c ≈ 11.7

with Ablowitz, Fibich, Sivan and Weinstein (in progress)



Power condition
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based on VK: solitons is likely to be stable when
sufficiently far from bandgap edge (not too wide)



Evolution of vacancy solitons
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µ = 0.5 ⇒ dP
dµ < 0 −→ stable

Direct Numerical Simulations (DNS) of (2+1)D NLS
Initial conditions: mode + 1% noise

DNS: small focusing-defocusing oscillations



Evolution of edge dislocation solitons
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µ = 0.75 ⇒ dP
dµ > 0 −→ linearly unstable

DNS: focusing-defocusing oscillations



Evolution of Penrose solitons
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Power and spectral conditions

periodic square lattice V (x, y) = 2.5
[

cos2(2πx) + cos2(2πy)
]
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Self-focusing and collapse

Use power-perturbed mode as initial conditions

µ = −31 (left) and µ = −3 (right) have P [u] ≈ 0.98PNLS
c ,

but opposite sign of dP
dµ

L−1(z) := max(x,y) |ψ(x, y, z)|2/max)(x, y)|ψ0(x, y)|
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Drift instability

drift (lateral dislocation) observed during evolution,

associated with violation of spectral condition λ(V )
1,2 < 0

occurs generically when initial conditions are on
potential max

studied by Pelinovsky in 1D lattices

Fibich and Sivan: nonlinear lattices; further
investigations in progress



Drift during evolution
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Drift – cont.
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Drift – cont.
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Drift during mode computation
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drift can also be observed during iterations of Spectral
Renormalization method



Summary

2D solitons in periodic lattices well known and observed

theoretical/computational studies of 2D solitons in
irregular lattices: vacancy defects, edge-dislocations,
and quasicrystal structures, extensions to vortex and
Bessel solitons

rigorous theory, asymptotics and systematic
computations give insight into soliton instabilities

Thank you for your attention!
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