2013 APPM 6640
APPM 6640 Syllabus

Multigrid Methods ot

- Homework exercises & computing assignments (Lab)

Lectures: Mondays & Wednesdays 10-10%%m ECCR 1B51 - Team project: identify & pursue a target application
Computing Lab: Mondays 12-12%° ECCR 143 - Philosophy (the course is not just about multigrid!!l)
Office: Mondays 11-115° & Wednesdays 9-9°° ECCR 257 - 6uiding rule: understanding trumps knowledge
- Look for fundamentals & basic principles to guide you
Steve McCormick - Solutions are often straightforward consequences
stevem@colorado.edu - Think about the scientific method in general

- Understand by concrete examples & experience

Toby Jones
Tobias.Jones@colorado.edu

- Know the whole picture
- Ask questions & interject comments

Chris Leibs - Make sure T explain what you need
chris.leibs@gmail.com
+ Text
303-492-0662 (email is betterl) - A Multigrid Tutorial, 2" edition, 2" printing
http://amath.colorado.edu/faculty/stevem - Supplemental material as needed
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Sources Homework exercises

Due one week after the relevant chapter is covered in class.

MGNet Newsletter & software repository
http://www.mgnet.org 1: 134 6: 12 6

MathSciNet Many papers electronically available 2. 1-3,8,10,13, 16 7: 1,2,7,10 12,15, 21

http://www.ams.org/mathscinet

Copper Mountain Conference March 17-22, 2013
http://grandmaster.colorado.edu/~copper 4: 6,7,11 9: 1,3
We plan to support your attendance there.

3 2-6 8. 2,6,8

5 1-3,12,13 10: 1,3,5,8,9
Course web site: . .
http://grandmaster.colorado.edu/appmé6640/ Computing Assignments
These slides are there. You will learn about this in the lab &/or from the course website.
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Team project
main objective: understand applied math research
Group into teams of possible common interest.
Meet in lab as time permits later in the semester.
Identify an application area of interest.
Identify a problem in that area & learn about it.
Learn current methods & their limitations.
Get experience with these methods on typical cases.
Try cases where these methods (begin to) fail.
Brainstorm a better (multilevel?) method.
Implement & fest your idea.
Inform the rest of the class along the way.
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Initial Position
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Prolog: Multigrid in Action

The following soldier slides were created by

Irad Yavneh
Department of Computer Science

Technion - Israel Institute of Technology
irad@cs.technion.ac.il

Basic Concepts: Local vs. Global processing.

* Imagine a large number of soldiers who need to
be arranged in a straight line and at equal
distances from each other.

* The two soldiers at the ends of the line are
fixed. Suppose we number the soldiers O to N,
and that the length of the entire line is L.
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A I I B B O B N

Final Position
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(=2 ]
S

Global processing. Let soldier number j stand
on the line connecting soldier O to soldier N
at a distance jL/N from soldier number O.

=24
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Local processing (iterative method). Suppose that the initial
position of inner soldier j is x;. Then if every j moves all at
once to the point midway between the initial locations of
neighboring soldiers, j-1 & j+1, we get

This method solves the problem directly, X; € (X 1% X;,1)/2.

but requires substantial sophistication:

recognition of the extreme soldiers and (Assume for simplicity that the soldiers have guides to make
some pretty fancy arithmetic. sure they're evenly spaced, so they only have to get ina

straight line. Thus, x; is their signed distance from that line.)

* This is an iterative process.
* Each step brings us closer to the solution (convergence).
* The arithmetic is trivial.

* The process is local.
CU-Boulder 11 of 396 CU-Boulder 12 0f 396
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Fast convergence
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S

Slow convergence

Local solution: damping E]
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Local solution: damping
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BEEREBERERE

CU-Boulder

Local solution: damping
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LI I R R

Local solution: damping
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The multiscale idea: Employ the local processing with
simple arithmetic. But do this on all the different scales.
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Large scale
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Large scale Intermediate scale
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Intermediate scale Small scale
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How much work do we save?

Jacobi needs about N2 iterations & N2xN = N3 ops to
improve accuracy by an order of magnitude.

g E 9 9 E ﬁ g E E Brandt solves the problem in only about N operations.

Example: for N = 1000, MG needs about

1,000 operations
instead of about

1,000,000,000 operations ! ! |
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How important is computational efficiency?

Suppose we have 3 different algorithms for a given problem,
with different computational complexities for input size N :

10 N ops
Algorithm 2: 103 N 2 ops

Algorithm 1:

Algorithm 3: N 3 ops

Suppose N is such that algorithm 1 requires one second.

How long do the others require?
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The catch

In less trivial problems, we can't construct appropriate
equations on the large scales without first propagating
information from the small scales.

Skill in developing efficient multigrid is needed for:

1. Choosing a good local iteration.

2. Choosing appropriate coarse-scale variables.

3. Choosing inter-scale transfer operators.

4. Constructing coarse-scale approximations to fine scales.
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Computer
Speed N Algorithm 1 | Algorithm 2 | Algorithm 3
(ops/sec) O(N) O(N?) O(N?3)
1M (~10°) 1 1sec 0.001sec | 0.000001
(1980's) sec
16 (~10%) 1K 1sec 1sec 1sec
(1990's)
1T (~10%2) M 1sec 17 min 12 days
(2000's)
1P (~10%5) 16 1sec 12 days | 31,710 years
(2010's)

Stronger computers = more gain!

CU-Boulder
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What about two dimensions?

Put points midway between horizontal

neighbors.

This is just imposing xi = (xi1 + Xi+1)/2 on each row j or

2Xi - Xi-1 - Xi+1 = 0.

—eo—o—o0—9¢

oo_?oo

¢ -d< 3>l o
l

e o 4 o o

*—o—o—0—o

The hitch is that this is not a common physical problem.
More common is to ask that some physical quantity at each

point be an average of its FOUR neighbors (Poisson).
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Poisson

CU-Boulder 37 of 396

Physical principle

discrete view
boundary

CU-Boulder 39 of 396

CU-Boulder

height h

Poisson: minimal surface
given boundary values, minimize surface area

38 0f 396

Local relationship

hij= (gt higge b vhip /4

CU-Boulder
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error = exact - computed
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Outline

A MU"'igl‘id TW"‘Q' by chapter

- . 4. 1. Model Problems 6. Nonlinear Problems
2nd Edition, 2" Printing

2. Basic Iterative Methods Full approximation scheme
Convergence tests 7. Selected Applications
B Analysis Neumann boundaries
Y 3. Elements of Multigrid Anisotropic problems
William L. Briggs Relaxation Variable meshes
CU-Denver Coarsening Variable coefficients
4. Implementation 8. Algebraic Multigrid (AMG)
Van Emden Henson Complexity Matrix coarsening
LLNL Diagnostics 9. Multilevel Adaptive Methods
9 P
Steve McCormick 5. Some Theory FAC
i 10. Fini
CU-Boulder Spectral vs. algebraic qu‘r.e Elemenfs
Variational methodology
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Suggested reading Multilevel methods have been
CHECK THE MG LIBRARY & MGNET REPOSITORY developed for...

A. Brandt, "Multi-level Adaptive Solutions to Boundary Value Problems,” PBEs, CFD, porous media, elasticity, electromagnetics.
Math Comp., 31,1977, pp 333-390. + Purely algebraic problems, with no physical grid; for example,
network & geodetic survey problems.

Image reconstruction & tomography.

Optimization (e.g., the traveling salesman & long
transportation problems).

Statistical mechanics, Ising spin models.

S. McCormick, ed., "Multigrid Methods,” STAM Frontiers in Applied Quantum chromodynamics.

Math. 1T, 1987. Quadrature & generalized FFTs.
U. Trottenberg, C. Oosterlee, & A. Schiiller, "Multigrid,” Academic - Integral equations.

Press, 2000.
P. Wesseling, "An Introduction to Multigrid Methods,” Wylie, 1992.

A. Brandt, “"Multigrid techniques: 1984 guide with applications to
computational fluid dynamics,” GMD, 1984.

W. Hackbusch & U. Trottenberg, "Multigrid Methods”, Springer-Verlag,
1982.
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Everyone uses multilevel methods

* Multigrid, multilevel, multiscale, multiphysics, ...
Use local "governing rules” at the finest resolution
to resolve details of the state of the system, but
use coarser resolution o resolve larger scales.
Continual feedback is essential because improving
one scale impacts other scales.

* Common uses
Sight, art, team sports, politics, society, thinking,
scientific research, ..
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Approximate u“(x) via Taylor series

O(h?) means a quantity bounded in norm by Ch? for some constant C.

- Approximate 2" derivative using Taylor series:

0 52 3 0
u(x; 1) =u(x;) + hufx;) +§u’(xi) +?u x;) +O(h4)
+ n? n? 4
u(x;_q) =u(x;) Shu'(x;) +5u”(xl~) Y " (x;) +O(h™)

* Summing & solving:

u(x;pp) = 2u(x;) +u(x;_q) 2
u'(x;) = 7 + O(h”)
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1. Model problems

- 1-D boundary value problem:

-u"(x) = f(x) 0<x<1l 0=0
u(0) =u(1) =0
- Grid:
h=—, x,=ih, i=0,1,...,n
n
x=0 x=1
.X!:O -ijl .xTZ T T T T T T -le T T T T T T T T -xl

- Letv,ru(x)&f # f(x) fori=01,.n.

This discretizes the variables, but what about the equations?
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Approximate equation via
finite differences

Approximate the BVP

() -/(x)  0<x<l, 020
u(0) =u(1) =0

by a finite difference scheme:

V. .
i+1 i
“Viop 2V —vig

CU-Boulder 56 of 396



Discrete model problem

Letting v = (v;, Vs, .., v, )T & f=(f, fo o, Fr )T,
we obtain the matrix equation
Av = f,

where A is (n-1)x(n-1), symmetric, positive definite,

) . Y, f
12 1 Y2 f,
A= % -1 2 ) . v=| Vs f= f}
-1 2 -1 v n
_1 2 n-2 n-2
anl n-1
CU-Boulder 57 of 396

Basic solution methods

Direct
- Gaussian elimination
- Factorization
- Fast Poisson solvers (FFT-based, reduction-based, ...)

Iterative
- Richardson, Jacobi, Gauss-Seidel, ...
- Steepest Descent, Conjugate Gradients, ...
- Incomplete Factorization, ...

Notes:

- This simple 1-D problem can be solved efficiently in many ways.
Pretend it can't & that it's very hard, because it shares many
characteristics with some very hard problems. If we keep things
as simple as possible by studying this model, we've got a chance
to really understand what's going on.

- But, to keep our feet on the ground, let's go to 2-D anyway...

CU-Boulder 59 of 396

Stencil notation

A=z[-12-1]

dropping h'2 & « for convenience

2

v (0
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2-D model problem
+ Consider the problem
—lxx — Uyy =f(x,y), O<x<l 0O0<y<l
u=Owhenx=0,x=1,y=0,0ory=1 o=0
* Consider the grid z
pol L
ol Y m
(x,-,yj) =(ihx,jhy) %
O0=si=s|
0= ]' =m
CU-Boulder X 60 of 396



Discretizing the 2-D problem
Let v & u(x,y;) & f;; # f(x,,y;) . Again, using 2"- order
finite differences to approximate u,, & u,,, we arrive
at the approximate equation for the unknown u(x;y;),
fori=12,.|-1&j=12,. . m-1:

“VieLj + = Vielj o =Vij -1+ =Vije
+

p? G o
vi,;=0: =0, i=l, j=0, or j=m
Order the unknowns (& also the vector f )
lexicographically by y-lines:
V=V ViVt sVa 1o Ve s e s Vamotse oo Vit s Vicia e s Vicimet )

61 of 396
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Stencils
preferred for grid issues

Stencils are much better for showing the grid picture:

I 1 dropping the mesh sizes &
hi L T [
—% o @ o
L y i

Stencils show local relationships--grid point interactions.
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Resulting linear system
We obtain a block-tridiagonal system Av = f :

A, oI,

I
\

|

—
<
oh D

|

—
R N

I

. 71')(
71’)( A -2 7IX
-IoA 5

Via f/fz

Vi -1

where I, is the K: times the identity matrix &

2.2 1
W e
* Y 14
1 2 2 1
L2,z L
WeoR R k2
Y x Y 14
1 2 2
R R R
A= -
' 1
3
Y
1 2. 2 1
Lz2.2 L
WoR K h
Y x 14 y
Lo2,2
h h:oh 62 of 396
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Inhomogeneous boundary conditions
superposition
Consider a boundary-value problem on domain @ with nonzero data, g,

on the boundary, 9Q :

Lu=f onQ, Mg\zg on 0Q. Dirichlet: M = T

Find a suitable w satisfying the boundary condition:
Mw=g on 0Q.

Now just find z to correct w so that w + z = u, that is, z=u-w:
Lz:f—LWE]AC onQ, Mz=g—Mw=0 ondQ.

Message: Don't look for u. Instead, look for w so that Mw = g on 9Q &

then look for z = u - w such that Lz = f-Lw on @ & Mz = 0 on 9Q.

In the discrete Dirichlet case, set wh to g on dQ and 0O inside Q.

So we consider only the homogeneous case from now on.
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Outline

Chapters 6-10:
Nonlinear Problems
- Full approximation scheme

Selected Applications
- Neumann boundaries

Chapters 1-5:

-V Model Problems
Basic Iterative Methods

- Convergence tests

- Analysis
. Anisotyopic problems
senentsof itHomework DL ...
c ) - Variable coefficients
- Coarsenin
J Algebraic Multigrid (AMG)

- Matrix coarsening
Multilevel Adaptive Methods
- FAC

Finite Elements

- Variational methodology

Implementation

- Complexity

- Diagnostics

Some Theory

- Spectral vs. algebraic
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Residual correction
* Note: ezu-v=Ae=A(u-v)=f-Av=r.
* Residual Equation:
Ae=r.
What does this do for us?
* Residual Correction:
u=-v+e.
Solve Au = f with guess v
CU-Boulder or Ae = r with guess O. 67 of 396

2. Basic iterative methods

+ Consider the matrix equation Au = f
& let v be an approximation fo u.

+ Two important measures:

The Error: e = U - V with horms
llell- = max |eil & |lel|z= (Ze?)2.

What does
The Residual: r = f - Av with

[|r|| measure???

Hrelle & flrllz. Why have both
ré&e???
CU-Boulder 66 of 396
Relaxation
+ Consider the 1-D model problem
—Ui— 1 +2u; — Uiy =h2fl- 1<i<n-1 uy=1u,=0

- Jacobi (simultaneous displacement): Solve the ith
equation for vi holding all other variables fixed:

1
vinew) = §( vl 4 v (kD 4 p2f l<i<n-1

CU-Boulder
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Jacobi in matrix form

* Let A=D-L-U, whereD is diagonal & -L & -U
are the strictly lower & upper triangular parts of A.
* Then Au=f becomes
(D-L-U)u~=f
Du=(L+O)u + f
u=D"YL+U)yu+ Df
+ LetR, =D N(L+U). R; = D(D-A) = I-D'A
"Error propagation or iteration matrix".
* Then the iteration is
p(new) _ RJV(old) +D” lf

CU-Boulder 69 of 396

A picture

1D Poisson
Ry;=D!(L+U)=[10 1]
so Jacobi is an error averaging process:

el'(new) - (ei-l(OId) + ei+1(old))/2

CU-Boulder 71 of 396

Error propagation matrix & the error

From the derivation,
u = D_l(L+U)u + D_lf
u=Ryu+D" 1f

the iteration is

p(new) =RJV(old) +D_1f

subtracting,
u —y(new) - Ryu + D_lf - ( RJV(Old) +D_1f)

or
u —y(new) _ Ryu - RJV(Old)
hence,

Error propagationl | ¢ = R, e R; = I-D?A
CU-Boulder 70 of 396
But...

>©©<>< %
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Another matrix look at Jacobi
ven) < DL+ U)vOd s D1F  (L+U = D-A)
= (I - D'A) vOId + D1 §
v(new) - V(old) _ D—l (AV (old) _ f) = v(old) + D—l r

Exact: u =u -DI(Au -f)
Subtracting: e (new) = g (0ld)_ p1 pAg(0ld) = (I-D1A)e (o)
Exact: u=u-Al(Au-f)= Alf

General form:  u=u- B (Au-f) withB~ Al
Damped Jacobi: u=u - wD?(Au - f) with 0<w<2/0(D'A)

Gauss-Seidel: u=u - (D - L)—l (AU _ f)

Note that R = I - wD'A is a polynomial in A when D = T.

We exploit this simplicity (symmetry, etc.) in what follows.
IThis special property doesn't usually hold in practicelll

CU-Boulder 73 of 396

Gauss-Seidel (1-D)

- Solve equation i for u; & update immediately.
- Equivalently: set each component of r to zero in turn.
+ Component form: fori=1,2, .., n-1, set

2.
vi e (visp# v + 15

* Matrix form: 4 =(D-L-U)
(D-L)u=Uu +f
u=(D-L) 'Uu+(D-1L)"'f
- Let Rz = (D-1)"'U Rg = (D-L)}(D-L-A) = I- (D-L)'A

* Then iterate: i -1,
p(new) « RGV(" ) + (D-L) S

* Error propagation:| ,(new) RGe(old)

CU-Boulder 75 of 396

Weighted Jacobi

safer changes: 0 < w <2/0(D!A)#~1

+ Consider the iteration

Vl(new) — (1-w) V[(o/d) + %( Vl(l—)lld) + Vl(i)lfl) + hzf[)

* Letting A = D-L-U, the matrix form is

y(new) - [( l-w) ! + u)D_](L+U)}v(”Z‘{) + ooth_lf

= va(OZd) + coth - lf

+ Note that

Ry=[(1-w) ] +0R,]

- Tt is easy to see that if e(@ProX) = y - v(appProx) then

elnew) _ Rwe( old)

CU-Boulder 74 of 396

Red-black Gauss-Seidel

+ Update the EVEN points:

1 2
vai = 5 (Va1 ¥ Vaien 1S 0)

* Update the ODD points:

1 2.
V2isl < 5(”’2;' + Vi + RS0 1)
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Test?

Au=f

Need to know how we're doing!!!

* What f ?
’ Au=0

* What v?
v = rand

CU-Boulder 77 of 396

Convergence factors differ for
different error components

Error, |lell, , in weighted (w=2/3) Jacobi on Au=0
using initial guesses vy, v3, & v¢ & n = 64:

0 20 40 60 80 100 120

CU-Boulder # iterations 70 o 396

Numerical experiments

+ Solve Au = 0, —U; _ +2“i — U1 = 0
+ Use Fourier modes as initial iterates, with n = 64:

vk:= sin(kmrxi), xi=i/n, lLicn-1, 1cken-1
component mode

k=1
A

CU-Boulder 78 of 396

Stalling convergence
relaxation shoots itself in the foot

+ Weighted (w=2/3) Jacobi on 1-D problem & n = 64.
+ Initial guess:

() (0 () o (29)

- Error, ||e||., plotted against iteration number:

1

0.91
[OX:
0.7
0.4
0.5
04
0.3
0
0.1

0 10 20 30 40 50 60 70 80 90 100
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Analysis of stationary linear iteration

+ The iteration is v (ew) = Ry (0ld) 4 g,
+ Exact solution doesn't change: u=Ru +agq.
* Subtracting: e (new) = Re (old),

+ Let e © be the initial error & e ) be the error
after the i ™ iteration. After n iterations, we have
e = Relm-D) = R2g(m2) = = RmMe(0),

a b ¢ 4
We can deal with 24, but |¢ Z Il 222
g i

a b ¢ 4

if |4 ¢ fle=2%e272

What if e = 2%e 2?7
g h i

CU-Boulder 81 0f 396

“"Fundamental Theorem of Iteration”

R is convergent (R™ — 0 as m — =) iff
p(R) = max |A] < 1.

Thus, vim = R v — O for any initial vector v
iff p(R) <1

p(R)<1 assures convergence of R iteration.

p(R) is the spectral convergence factor.
But p doesn't tell you much by itself--it's
generally valid only asymptotically. It's useful

for the symmetric case in particular because
it's equal to || R ||,, so we'll use it here.

CU-Boulder 83 0f 396

Review of eigenvectors & eigenvalues

Bold for vectors
here temporarily

* The real number X is an eigenvalue of matrix B & w 20 is
its associated eigenvector if Bw = hw.

* The eigenvalues & eigenvectors are characteristics of a
given matrix.

- Eigenvectors are linearly independent, & if there is a
complete set of N distinct eigenvectors for an NxN
matrix, then they form a basis: for any v, there exist
unique scalars v, such that

V = 2 VKWk. )
k=l Why is an
N eigenvector
B™v= k2-1 AT VIWK. yseful???

* Propagation:
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Rayleigh quotient vs. spectral radius

assume A is symmetric (w, orthonormal ) & nonnegative definite (A > 0)

- RQ(V) < p(A): v =2vw,
RQ(v)

<Av,v> <AV W, 2V W, >

<V,V>  <IYU W, 2V W >

_ <2>\.kaW/<,2V/<W/<> =2}\'kvlg g)\_N: p(A)
<2Vka,2Vka> Zsz

- sup, . oRQ(V) = p(A):

RQ(WN)= <AWN YWy > _ <}\’NWN SWy > =}\‘N = p(A)
<W, ,Wy > <W, ,W, >
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Euclidean norm vs. spectral radius
use RQ

IRI, = p2(R"R):
[IR[1,%= sup,.c [ IRe]],2/]le]l,?
= sup,,o <Re Re >/<e,e>
= sup,,, <RTRe e >/<e,e> = p(RTR)
note: |[Rell, < [IR[|,|lell,

|Al|, = p2(A?) = p(A) for symmetric Alll

CU-Boulder 85 of 396

Example: R = ( 0 g} k>0 large

p(R) = 0 but ||R||, = p2(R™R) = p1/2(/§ 8]: K|

Dll, _ 1R
e(o):(0>:>H€ 2 _ 2 _
L)@l (le@1,

Thus, 1 iteration with e shows dramatic L? divergence!
But R? = 0, so e® = Re® = R2e©® = Ol
Thus, 2 iterations with e show complete convergence!

On one hand, this is special (A=0, large K, 2x2), so this
behavior would be more subtle & persistent in general.

On the other, this behavior would vanish for symmetric R.

of 396

CU-Boulder

p(R) vs. [IR]];
p(R) = sup IMR)I. M [IR[1,=sup,.o | IRell, /el
= pl/Z(RTR).
Norm independent. [Nom\? I Depends on |[-|[,.

Asymptotic: [Ervor bound? | 111, < [IRIl 1]
p(R) < 1 << ][RI, worst casel Probably
means that it will pessimistic initially, but
converge someday. sharp sooner or later.

p(R) = inf |[R]| p(R) = [IRII;
over all norms. for symmetric R.

CU-Boulder 86 of 396

Convergence factor & rate

 How many iterations are enough to guarantee reduction of

the initial error by 1042
e(m)
<!

R"|<|R|" ~107¢.

* So, including the asymptotic estimate, we have

d d
m ~ or .
—log, [R| ~ —log,, p(R)

- Convergence factor = ||R]|| or p(R) error reduction/iterate.

- Convergence rate = -log;o(|IR[|) or -log,(p(R)) digits/iterate.
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Convergence analysis: Weighted Jacobi

Ro = (1—w)l + 0D L +U)

- I-owD 4
2 —1
’ —1 2 —1
szlfg -1 2 -1 1-D

For our 1-D model, the eigenvectors of weighted

Jacobi R, & the eigenvectors of A are the samel S\A;ZZ:])IEI
)
;L(Rw) =1- EA(A)
CU-Boulder Remember that A is without h? herel 89 0f 396

Eigenvectors of R = eigenvectors of A

Me(R,) = 1 — 2wsin? (T)

n

* Expand the initial error in ferms of the eigenvectors:

n
0) _ 2 drop bold
e = CW < for vectors
k=1

e After m iterations:

n
m (0) __ m
R"e" = E c AW,
k=1

« The k™ error mode is reduced by A, (R,) each iteration.
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Eigenpairs of (scaled) A

The eigenvectors of A are (discrete) Fourier modes!

. -12 -1]
k ik [
M (A) = 4sin® <27r) , Wy ; = sin (HT) )\.n_154
n ' n
A= 72h?
n= 64 /\ M
" Tke1 ’ D P T
k=8" k="16" "k =32
CU-Boulder 90 of 396

Relaxation suppresses eigenmodes unevenly

Look carefully at Ax(R.) = 1 — 2wsin® <I;T)

n

Note that if O<w <1,
then |2 (Ry)| < 1 for
k=1,2,..., n—1.
ForO<w <1,
A =1-— 2wsin? <1>
2n
. h
— 1 — 2uwsin? [ 2
wSs1n < 2
0 n =1- O(h,Q) ~1
k axis
CU-Boulder 92 of 396



Low frequencies are “undamped”

Notice that no value of w will efficiently damp out

long waves or low frequencies.

What value of o gives
0.8 . .
N s | the best dampmg of
o | short waves or high
N ~. frequencies n/2<k<n-1?
a;‘is ) 2Z_""| Choose o such that
-0.2 T ( 1 )LN/2 (R(u) = _A'N (Rw)
N o=17"""\ w=2/3 | S0==
-0.8
For 2D: =~
0 n or . =
k axis 5 93 0f 396
CU-Boulder o

Convergence of Jacobi on Au=0

Unweighted Jacobi 1o Weighted Jacobi

() 10 20 30 40 50 60 0 10 B 0 o 0 6
‘Wavenumber, & ‘Wavenumber, k&

« Jacobi on Au = O with n = 64. Number of iterations
needed to reduce initial error ||e||_ by 0.01.

+ Initial guess: ' <zk;7r>
Vg =SIn | —

n
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Smoothing factor

+ The smoothing factor is the largest magnitude of

CU-Boulder

the iteration matrix eigenvalues corresponding to
the oscillatory Fourier modes:

smoothing factor = max |1 (R)| forn/2 <k<n-1.

"MG" spectral radius?
Why only the upper spectrum?
For R, with w = 2/3, the smoothing factor is 1/3:
N, 21210412173 & [N [<1/3 for n/2 < k<n-1.

But |n | # 1 - wk®x®h? for long waves (k « n/2). %

94 of 396

Weighted Jacobi = smoother (error)

. . A% 1. 1627 1. T
« Tnitial error: v; =sin| — ] + =sin + —sin
n 2 n 2 n

(SIS R Y

not solution
or
approximationl!!

Many relaxation schemes
are smoothers:

Error after 35 iteration sweeps:

0.5 1
oscillatory error modes

are quickly eliminated, but
smooth modes are
slowly damped.

CU-Boulder
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Similar analysis for other smoothers

* Gauss-Seidel relaxation applied to the 3-point
difference matrix A (1-D model problem):

Rs=(D-L)U.
* A little algebra & trigonometry shows that
Me(Rg) = cos? <]%> (w); = cos’ (%) sin <ﬂ;—lﬂ>= }fﬁzsin(knxi)
. A sin(3m x;)
0. ,\ »
Ay o W Zsin(3mx, )
Gﬂk 40 50 60 70 10 20 30 i 40 50 60
What's w, look like for large k ? 07 of 396

CU-Boulder

Gauss-Seidel convergence

Eigenvectors of R; are not the same as those of Alll

Gauss-Seidel mixes the modes of A.
Gauss-Seidel on Au = 0, with

o n = 64. Number of iterations
° needed to reduce initial error
|lel||. by 0.01.

Initial guess (modes of A):

. ik
Vp; = sin | —
n

So 6-S does reduce oscillatory Fourier modes.

0 10 20 30 40 50 60

Wavenumber, k

CU-Boulder 99 of 396

Gauss-Seidel eigenvectors

1)

i
k=1,n=6d and
04
k= 30=64
0z a

o
0 nz 04 06 og 1 0 0z 04 05 LE] 1

nz 1

o1 k=b0pn=6d
o
-0.1
-0z
1)
-04
-05

0 nz 04 06 og 1 " 02 04 05 LE] 1

These are VERY different from Jacobi's eigenvectors.
It's not clear how smoothness depends on k.
You cannot expect G-S to quickly reduce Fourier modes.

You can only hope that 6-S produces smooth results!
CU-Boulder 98 of 396
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Chapters 1-5:
-V Model Problems
-V Basic Iterative Methods
- Convergence tests

- Analysis

T

illl;”lf" L RERIRINY \\ e
SRR A
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Outline

Chapters 6-10:

Nonlinear Problems

- Full approximation scheme
Selected Applications
- Neumann boundaries

Elements of Mulfl%mewor\k l )A,ri:sﬁ:ﬂ OpiC pr‘oblems

- Relaxation

- Coarsening
Implementation

- Complexity

- Diagnostics

Some Theory

- Spectral vs. algebraic

CU-Boulder

bte meshes
- Variable coefficients
Algebraic Multigrid (AMG)
- Matrix coarsening
Multilevel Adaptive Methods
- FAC
Finite Elements

- Variational methodology
120 of 396



3. Elements of multigrid
1s* observation toward multigrid

Many relaxation schemes have the smoothing
property: oscillatory error modes are quickly

Reason #1 for coarse grids:
Nested iteration

Coarse grids can be used to compute an improved
initial guess for the fine-grid relaxation. This is

eliminated, while smooth modes are often very
slow to disappear.

We'll turn this adversity around: the idea is to
use coarse grids to fake advantage of smoothing.

advantageous because:

- Relaxation on the coarse-grid is much cheaper: half as
many points in 1-D, one-fourth in 2-D, one-eighth in 3-D,...

I | | } } } } Il | | | | | | | | | 1 ] h
;‘0 X o 3‘% Q - Relaxation on the coarse grid has a marginally faster
} . % % . . . . . % 2h convergence factor (|24(R)| & 1 - on2h?):
X0 Xns2 €2
1- O(4h?) instead of 1-0O(h?).
How?
CU-Boulder 121 0f 396 CU-Boulder 122 of 396
Nested iteration Reason #2 for coarse grids:
: + A smooth function:
* Relax on Au = f on Q* to obtain initial guess v2h. - On the coarse grid,
smooth error appears to
* Relax on Au = f on Q2" to obtain initial guess vh. g be relatively higher in
frequency: in this example,

0. it's the 4-mode out of
a possible 15 on the fine
grid, ~1/4 the way up the
spectrum. On the coarse
grid, it's the 4-mode out
of a possible 7, ~1/2 the
way up the spectrum.

Relax on Au = f on Q" to obtain ... final solution???

o 0. I

* What is A%hy2h = £2h7 can be represented by linear

hyh = £h
Analogous to A" = " for now. interpolation from a coarser grid:

¢ How do we migrate between grids?
Relaxation on 2h is

cheaper & faster
' on this modelll

Hang on... 0

What if the error still has large smooth components
when we get to the fine grid Q" ?

-0§

Hang on... ' T s |

123 of 396 CU-Boulder 124 of 396
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s . [ 2ikm . [ikm oh
W,z =sin | —— | =sin /2 =wy;

L0566 o000

Also, note that

h
0 2 4 6 8 10 12
Wn/Z - 0
k=4 mode, n =12 grid

on the coarse grid.

What happens
to the modes
k>n/2? 1

6bb6 oooo

0 1 2 3 4 5 6

k = 4 mode, n = 6 grid
CU-Boulder g 125 of 396

Nle\tfeREBE i (BESI SRR,
grid 2h functions to grid h functions...

* Values at points on the coarse grid map unchanged
to the fine grid.

* Values at fine-grid points NOT on the coarse grid
are the averages of their coarse-grid neighbors.

Qh

AR

We will often identify (22" with a subset of Q"

CU-Boulder 127 of 396

For k>n/2, w," is disguised on
the coarse grid: aliasinglll

For k > n/2, the k™ mode on ' .
the fine grid is aliased & ’
appears as the (n - k)™ mode
on the coarse grid:

L6565 oooo
+
+

p - .
a7 . 0 2 4 6 8 10 12
(/LUZ) — SiIl (2L)7Tk k=9 mode, n =12 grid
27 n
. (2ir(n —k) o
= —sm | ———- 3'
n 0.
. (im(n—k) o
= —sm |\ —————— o0,
2] n/2 -
. . 1 0 1 2 3 4 5 6
- (wn—k:)i k = 3 mode, n = 6 grid
CU-Boulder 126 of 396

1-D interpolation (prolongation)
to migrate from coarse to fine grids

* Mapping from the coarse grid to the fine grid:
1 Qs @M (@ =i

- Let v, v2' be defined on Q" 2" Then

,ézh v2h _ h

where
vh = v for OSISE (including boundaries),
/7 ] 2/1 2/1 f 0 <7< n 1
V2i+l=§(vl‘ +vil) or _1_5— .
CU-Boulder 128 of 396



1-D prolongation operator P

* P= Ifh is a linear operator: RNV2-1 ey -1

.n—8- e 0 X 0 X 0 X 0 e

Rl =l
SN

.

.

(ST

ISy
=N

Tx3 7 7l

1%, has full rank, so n(P)={0}.  rank=max # linearly
independent cols or rows

When is /2, v?" = 02
CU-Boulder 129 of 396

How well could v?" approximate u?

- Imagine that a coarse-grid approximation v2" has
been found. How well could it approximate the
exact solution u ?

- If uissmooth, a coarse-grid interpolant v2" might
do very well.

CU-Boulder 131 of 396

“Scatter” stencil for P
1172 1 1/2]

o x 1d2 %t 162 x o

CU-Boulder 130 of 396

How well could v" approximate u?

- Imagine that a coarse-grid approximation v2" has
been found. How well could it approximate the
exact solution u ?

- If uis oscillatory, a coarse-grid interpolant vZh
cannot work well.

CU-Boulder 132 0f 396



Where do we stand?

smooth | oscillatory
components|components

relaxation

nested

iteration

CU-Boulder 133 0f 396

2" observation toward multigrid

* The residual equation: Let v be an approximation to
the solution of Au = f, where the residual r = f -Av.
Then the error e = u - v satisfies Ae = r.

* After relaxing on Au = f on the fine grid, e will be
smooth, so the coarse grid can approximate e well.
This will be cheaper & e should be more oscillatory
there, so relaxation will be more effective.

+ Therefore, we go to a coarse grid & relax on the
residual equation Ae = r.

What's a good initial guess on grid 2h? e =01

How do we get to grid 2h? Stay tuned...

CU-Boulder 135 0f 396

- Can we make something smooth? | _ .rpror

The Key Step to Multigrid

+ If what we want to compute is smooth, a

coarse-grid interpolant could do very well.

* If what we want to compute is oscillatory, a

coarse-grid interpolant cannot do very well.
What if u is not smooth? Can we make it so?

Can we smooth e? Can we get e & use it to get u?
Ae=r & u<v+el

+ So, use nested iteration on the residual equation

to approximate the error after smoothing!!l

+ Just because the coarse grid can approximate e well

doesn't mean we know how to do it! But we will soonl

CU-Boulder 134 0f 396

Coarse-grid correction
2-grid

* Relax on Au = f on Q" to get an approximation vh.

- Compute r = f - AV,

- Transfer Ae = r to Q%" somehow & relax on it to obtain
an approximation to the error, e?",

N h
- Correct the approximation vh < vh + Ty e?h,

This is the essence of multigrid.

We need a way to transfer Ae = r to Q2.

CU-Boulder 136 0f 396



A way to coarsen Ae - r
Galerkin

* Assume we've relaxed so much that e is smooth. p when grids

+ Ansatz: e=Pv®"  for some coarse-grid veh, ~ undersiood,
else I3,

How do we characterize e so we can hope to compute it?

Ae=r = AP vh=p
7x7 7x3 3x1 = 7x1
* Too many equations now & too few unknowns!
* How about just eliminating every other equation?
*+ How about multiplying both sides by some 3x7 matrix?

PT
AZh We migh i
ght write
( PTA P )V2h =PTr TR instead Oth
BT T I = 3 P" or maybe Ij".
X.
CU-Boulder 137 of 396

1-D restriction by full weighting

- Let vh, v?h be defined on Q" Q% Then
Rv"=TIv"=v®  Ris cPT herelll
where

1
2h _ Lo h
V/ - 4(V2i—1

h h
+ 2V2/ + V2/’+1)'

Qh

Q2h

CU-Boulder 139 of 396

1-D restriction by injection
* Mapping from the fine grid to the coarse grid:

R = I:” Q" 5 Q% Ris not PT herelll

- Let V', v?" be defined on Q" 0%, Then
h _ T2h,,h _ ,,2h
Rv —Ih v =v,
2h _ h

where vi" = v,

Qh

Q2h

CU-Boulder 138 0f 396

1-D restriction (full-weighting)

* R= ]}%h is a linear operator: RN1 ey y0/2-1

Don't confuse R here with error propagator notation.

‘ n:8: h

Jh 22h
i "L
h — 2h
U;i = U%h .
nh n2h
327 | U5 U3/ 31

v7 Tzl

/
Ny,
[N
[ [
D=
W [ [
[N
W[

I;%h has rank g—l because dim(Range(R)) :%—1.

Look at the columns of R associated with grid 2h.
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Prolongation & restriction are
often nicely related

* For the 1-D examples, linear interpolation & full
weighting are

+ So they're related by fthe variational condition

T P:CRT
o= ey’ | cinfR,

CU-Boulder 141 of 396

"Gather” interpolation stencil
1/4 1/4

[1/2 1/2]
1/4 1/4

Centered over a fine-grid point ®.
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2-D prolongation

/ _ 2k
Vi = Vi

I
) = —( 2l h
Vieny = 50 Vi)

A= N|= A=
Nl= = N~
A= N[= A=

1
1 Z 2 v2h ok
V3241 = 2( vl +vitien)

1
y L N y
Viergie1 = OV Vi AVt i en)

We denote the operator by
using a "scatter” stencil ] [.
Centered over a C-point @, it

shows what fraction of the

C-point's value contributes
to a neighboring F-point @.
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2-D restriction (full weighting)

1 1 1
16 8 16
11 1
8 4 8
1 1 1
16 8 16

We denote the operator by
using a "gather” stencil [ 1.
Centered over a C-point @, it
shows what fraction of the
value of the neighboring
F-point @ contributes to the 6 1
value at the C-point.
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Now we put all these ideas together

+ Nested Iteration (Relaxation on Coarse Grids)
- effective on smooth solution (components).

* Relaxation on Fine Grid
- effective on oscillatory error (components).

Residual Equation on Fine Grid
- characterizes the error.
- enables nested iteration for smooth error (components)!!!

Prolongation (variables) & Restriction (equations)
- provides pathways between coarse & fine grids.
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2-grid coarse-grid correction

hoh _ ¢h

Relax on A’ v/ =fh Relzx onz;l{ v - f
Compute r/'= fi_4h,h  Correct Vi <=7+ ¢

Interpolate

}"h e ]gh e?h
@ Solve A2 20~ )2 >0
e2h — (47~ 72h
CU-Boulder 147 of 396

2-grid coarse-grid correction
Vi —cG(vh,

1) Relax o, times on A"vh = f" on Q" with arbitrary
initial guess V. If h=h then go to 6.

2) Compute rf = f - AR, A%h = TZhARTh = RAP

3) Compute rh = Iﬁh rh, (Galerkin)

. . or direct discretization
4) "Solve" A2he?h = r2h on Q21

5) Correct fine-grid solution vh < vh+ I} e2h,

coarsest ¢

6) Relax a, times on Ahvh = fh on QM.

What does e?" represent here?
CU-Boulder 146 of 396

How do we “solve”
A2hg2h = p2h?

“ P h vh FG%(Vh,fh)
. v GG ) Ve v +1é’hv2”.

TN YL Need to reuse notation!

Recursion |

v2”<— Ozh 2% Ga'( 2h Qh) vzheG“z(th’th)
@ - @

-4h 4, 2h 2h o

ey - AT

VA g . VA ™ (v4h’f4h)
-8h 8hy 4h 4h
[y, (-4 V4h)

R Al A ) @ eGmeth
* *

’. .. vSh — vSh +1186hhv|6h

* o

- H H( pH2 H/24 H/2 '
e I

. W ge (V4h f4h)

,
4n 4h 45 8h
AR 3 e

-

8
i = (")~
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V-cycle (recursive form)
Vh eMVh(vh,fh)

1) Relax o, times on Al yh =fh with initial v given,

2) If Q" is the coarsest grid, go to 4;
else: f2]1 - //%h(fh _ Ah vh)
v2h < o

v2/7 -— MVzh( v2/7 ,th)
3) Correct:  vhe yh 4 1B 20,

4) Relax o, times on Ayl - fh with initial guess v/.
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4. Implementation

Storage cost: V& " on each level.
Estimates are approximate (n, d, ..).

® Tn 1-D, a coarse grid has about half as many H——=<——=
points as the fine grid.

® Tn 2-D, a coarse grid has about one-fourth -'
as many points as the fine grid. _|
® Tn d-dimensions, a coarse grid has about 2-¢ -I 1
as many points as the fine grid.
d
® Total storage cost: n?(1+274+2-2 433+ +g-md) < 70,

less than 2, 4/3, & 8/7 the cost of storage on the fine
grid for 1-D, 2-D, & 3-D problems, respectively.
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Outline

Chapters 6-10:

Nonlinear Problems

Chapters 1-5:

-V Model Problems

-V Basic Iterative Methods - Full approximation scheme

- Convergence tests Selected Applications

- Neumann boundaries

- Analysis
-V Elements of Mul’ri%mewor‘k l)'?'i:éﬂ opic problems
. = bte meshes
- Relaxation
) - Variable coefficients
- Coarsening

Algebraic Multigrid (AMG)

Implementation . .
P - Matrix coarsening

- Complexity - Multilevel Adaptive Methods
- Diagnostics - FAC
Some Theory - Finite Elements

- Spectral vs. algebraic - Variational methodology
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Computational cost

- Let one Work Unit (WU) be the cost of one
relaxation sweep on the fine grid.

+ Ignore the cost of restriction & interpolation
(typically about 20% of the total cost).

+ Consider a V-cycle with 2 pre-coarse-grid correction
sweep (o, = 2) & 1 post-coarse-grid correction
sweep (o, = 1)

+ Cost of a V-cycle (in WUs):

3(1+2-d+2-2d49-3d + | +2-md) < 3 .
1-2-

+ Cost is about 2,4/3,&8/7 X 3 WUs per V-cycle
in 1, 2, & 3 dimensions, respectively.
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Convergence analysis

First, a heuristic argument:

- The convergence factor for the oscillatory error modes
(smoothing factor) is small & bounded uniformly in h.

smoothing factor = max |1, (R)| for n/2<ken-1.

- Multigrid focuses the relaxation process on attenuating the
oscillatory components on each level.

Relax 1st coarse grid Relax on fine grid

smooth oscillatory
k=1 k=n2 k=n-1

= The overall multigrid convergence factor is
small & bounded uniformly in h'!

Bounded uniformly in h # independent of h.
CU-Boulder 153 of 396

Actual error
A has h2 in it here

Au + O(h?) = f = Au® = f + O(h?)
= Auh =f  (uh=discrete sol'n)
= A(® - u") = O(h?)

= AE = O(h?). « consistency
(E = discretization error)
So |IEll = [|ATO(h)
< ||A'1||'||O(h2)||
(A)-0(h?) = Oh®/\ ., (A) ~ O(h?)/n?

max min

or stability
[|E|] = O(h?). <« convergence

CU-Boulder 155 0f 396

Remindgey PPt PRES model ke series
O(h?) means a quantity bounded in norm by Ch? for some constant C.

The BVP:

Aﬁt;’r(dééimqfé’@‘d dervatve using Taylor' series:
u(O) = u(l) 0 0

h
u(x l“)1=ugu ~

2
ho._

Su?ﬂ%nmgl’?ﬁ sivbhg:

Truncation (ar‘lr‘fli' ) — 24 x (P(xd) #(exact, ADE solu’rlon vector

M/’p(y@il) +=2ut=wh 3 + O(h )

; roer) =i 0= 1,2,...,nl
h earlier

CU-Boulder page 55 of 396

Overall goal of computation

Continuous problem:  Au=f, u, =u(x,)

Discrete problem: Ahyh = fh, vh & gh
Global/discretization error: E, = u(x,) - u."
[IE [] < Khe

(p = 2 for model problem & proper norm)

Algebraic error: ef'= u - vh

For tolerance ¢, assume the aim is to find v" so that the
total error, |le || = |[[u - v [| <&, where u®™ = (u (x)).

Then this objective is assured as follows:
He < [u® - uhf ]+ [{u" - v = [TET] + [le"]] < e.
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We can satisfy the convergence
objective by imposing two conditions
1) ||E|| < e/2. Achieve this condition by choosing an
appropriately small grid spacing h:
KhP = g/2.
2) ||eM| < e/2.  Achieve this condition by iterating until

[le"|| < e/2 = KhP on grid h; then we've

converged to the level of discretization error.

—>  Once discretization error & algebraic error
are in balance, then it would be better to
go to grid h/2 than to iterate morel
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Work to converge to the level
of discretization error

+ Using 6 V-cycles with convergence factor y gives an
overall convergence factor of v0.

+ We therefore have y9 = O(n™P), or 6 = O(logn ).

- Since 1 V-cycle costs O(1) WUs & 1 WUs is O(n?), then
converging to the level of discretization error using the
MV method cost

O(ndlogn).
+ Compares to fast direct methods (fast Poisson solvers).

But multigrid can do even better...
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Convergence to the level
of discretization error

+ Use an MV scheme with convergence factor y < 1 bounded
uniformly in h (fixed a; & o).

- Assume a d-dimensional problem on an nd grid with h = 1/n.
« Initial relative error: ||e™||/||u" || = ||uh - O||/[|u"]|] = 1.
+ Must reduce this to ||e"||/||uM || = O(hP) = O(nP).

+ We can determine the number of V-cycles needed for this

if we can bound the convergence factor, y.
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Numerical example

* Consider the 2-D model problem (with ¢ = 0):
- Uy~ Uy, = 2[(1 - 6x2)y?(1 - y2)+(1 - 6y?)x3(1 - x?)]
in the unit square, with u = O Dirichlet boundary.
* The solution to this problem is
u(xy) = - (x* - x2)(y* - y2).
+ We examine effectiveness of MV cycling to solve
this problem on (n+1)x(n+1) grids [(n-1)x (n-1)
interior points] for n = 16, 32, 64, 128.
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n =16

n =232

V-eycle | ||r"]|n

ratio llelln ratio

[Ix" |

ratiolella

ratio

0 6.75e+02
1 4.01e+00
2 1.11e—-01
3 3.96e—03
4 1.63e—04
5 7.45e—06
6 3.75e—07
7 2.08¢—08
8 1.24e—09
9 7.74e—11
10 4.99e—12
11 3.27e—13
12 2.18¢—14
13 2.33e—15
14 1.04e—15
15 6.6le—16

5.45e—01
0.01 1.03e—02 0.02
0.03 4.10e—04 0.04

0.04 Die=aQd 0.26
0.04 0.98*
0.05 1.038=0 1.00%

0.05 1.03e—04 1.00%
0.06 1.03e—04 1.00%
0.06 1.03e—04 1.00*
0.06 1.03e—04 1.00*
0.06 1.03e—04 1.00*
0.07 1.03e—04 1.00%

A 1.03e—04 1.00%
0.11) 1.03e—04 1.00*
0.45) 1.03e—04 1.00*
0.63/ 1.03e—04 1.00*

i 2.60e+03

1.97e+01
5.32e—01
2.06e—02
9.79e—04
5.20e—05
2.96e—06

| 1.77e—07

1.10e—08
7.16e—10
4.79e—11
3.29e—12
2.31e—13
1.80e—14
6.47e—15
5.1le—15

5.61e—01
0.01 1.38e—02
0.03 6.32e—04
0.04 4.41e—05
0.05 2005
0.06 5800
0.06 2.58¢—05
0.06 2.58e—05
0.06 2.58e—05
0.07  2.58¢e—
0.07  2.58e—05
0.07 2.58e—05

.08y 2.58e—05
0.36) 2.58¢—05
0.79) 2.58¢—05

0.02
0.05
0.07
0.59
1.00%
1.00%
1.00%
1.00"
1.00*

05 1.00%

1.00%
1.00%
1.00"
1.00%
1.00%

n =64

n =128

Numerical results
noripyy cycling

sisteawaaned eidésuts of
a]fa\ég%fl% elas We

‘rer each cycle,
Huar%ngfSro’ral

error norms, & ratios of

Veeyele | x|,

1.06e+04
1 7.56e+01
2 2.07e+00
3 8.30e—02
4 4.10e—03
5 2.29e—04
6 1.3%e—05

7 8.92e—07
8 5.97e—08
9 4.10e—09
10 2.87e—10
11 2.04e—11
12 1.46e—12
13 1.08e—13
14 2.60e—14
15 2.30e—14

ratio |[lef,  ratio |

5.72e—01
0.01 1.39e—02 0.02
0.03 6.87e—04 0.05
0.04 4.21e-05 0.06
0.05 7. OQL 06 0.17

6 Q6 0.91*
1.00%
1.00%
0.07 6 44e—! 06 1.00%
0.07 6.44e—06 1.00%
0.07 6.44e—06 1.00*
0.07 6.44e—06 1.00%
0.07 6.44e—06 1.00%

[l

4.16e+04
2.97e+02
8.25e+00
3.37e—01
1.65e—02
8.99e—04
5.29e—05
3.29¢—06
2.14e—07
1.43e—08
9.82e—10
6.84e—11
4.83e—12
3.64e—13
1.03e—13
9.19e—14

ratiolefln

5.74e—01
0.01 1.39e—02
0.03 6.92e—04
0.04 4.22e—05
0.05 3.28¢—06

bor
0.06 ql:E: )
0.06 R oo

0.06 1.61e—06
0.07 1.61e—06
0.07 1.61e—06
0.07 1.61e—06
0.07 1.61le—06

o8 1.61e—06
0.28) 1.61e—06
0.89) 1.61e—06

ratio

0.02
0.05
0.06
0.08
0.50
0.99%
1.00%
1.00%
1.00*
1.00%
1.00%
1.00%
1.00%
1.00*
1.00%

1h>(]ese norms fo their
1dniéd after the previous

cycle.
=16, 32, 64,12
IIr"PI 6,32, 64, 128.

IIPhIIh h [lrh[],
scaled residual error
Ilell, = h [[u®-vh],

scaled discrete total error
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gOR,  6.44e—06 1.00%
0.24) 6.44e—06 1.00*
0.88) 6.44e—06 1.00*
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Reconsideration

You want to approximate u".

A good iteration is the V-cycle.

What's a good way to start it?

Can you do better than v < 0?

— Start on the coarse grid. «

Use nested iteration for the V-cycle.

CU-Boulder
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A warning about bounds

- Bounds like |le, . Il <y |le, |l & [[u® - u"|| = O(h)
are only just that--bounds!

+ If you see behavior that suggests that these
bounds are sharp (e.g., halving h halves the
discretization error), then great. If you don't see
this behavior, don't assume things are wrong.

+ Think about this:
O(h?) = O(h) but generally O(h) # O(h?) Il

(Any process that is O(h?) is also O(h),
but the converse isn't necessarily true.)
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LOOk again at nested iteration

+ Idea: It's cheaper to solve a problem (fewer iterations)
if the initial guess is good.

+ How to get a good initial guess:
- "Solve" the problem on the coarse grid first.
- Interpolate the coarse solution to the fine grid.

* Now, let's use the V-cycle as the solver on each grid
level! This defines the Full Multigrid (FMG) cycle.
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Full multigrid (FMG)

vh < FMG (£

- Initialize (" 2. %"

- Solve on coarsest grid vH = (4T

- Interpolate initial guess y2ho 204

- Perform V-cycle vihe py2 (v p 2y

- Interpolate initial guess v/ < lélh v2h

- Perform V-cycle vhe My (V0 £
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FMG cycle cost

One V(2,1)-cycle is performed per level, at a cost of
3/(1 - 29) WUs per grid (where the WU is for the
size of the finest grid involved).

The size for the WU for coarse-grid j is 279 times
the size for the WU for the fine grid (grid 0).
Hence, the cost of the FMG(2,1) cycle in WUs is less
than

[3/(1-29)]1+29+22d+ )=3/(1-29)2

d=1: 12 WUs; d=2:16/3 WUs; d=3:192/49 WUs.
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FMG-cycle (recursive form)
vh <— FMG(fM),

1) Initialize fh, f?h,..., fH.

2) If h = H, then go to 4 (where MV is a direct solve);

else: vah «— FMG( 2h).

3) Set initial guess: V" <— IZthZh. We use
n=1
4) Perform V" <— MV(V", ") 1 times.
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Has discretization error
been reached by FMG?

If discretization error is achieved, then ||e"|| = O(h?)
& the V-cycle approximation converges to the solution of
the PDE about as well as the discrete solution does:

[Hu® - uh || = O(h?)
[u® - vh || = O(h?)

We need to be more careful...
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The basic FMG principle

=0 u = exact pde solution
u?h, u" = exact 2h, h solutions
v&h, v = exact 2h, h approximations

3ccS—+300

grid h plane
4ch?

CU-Boulder 169 of 396

Comparing the right things
Problem: We are thinking that u?" approximates uh

to order O(h?), when all we really know is that uh
approximates u® to order O(h?) (any h).

We know that u®® & u® are the "same", right?
So, if u?h approximates u@M to order O(4h?) &
uh approximates u®™ to order O(h?), shouldn't u?h
approximate u" to order O(4h?)? How, exactly?

When we interpolate u?" to grid h, what errors does
interpolation introduce?

Sorting out these comparisons is a bit technical.

In other words, here comes the algebra...
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Simpler schematic

circles are
really intervals

u = exact pde solution
u?", u" = exact 2h, h solutions
v&h, v = exact 2h, h approximations
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Interpolation stability

how interpolation affects error

Property: [|Pe2h|| < Blle2n|| 11P112 = max [[Pel[2/Ilel|2
. = max <Pe Pe>/<e.e>
Reasonmg: = max <P™Pe e>/<e,e>
|1Pe2h|| < [IPI] |le2"| g
= [IPTPI|2 [[e?"]|
1/2
1
1/2 1 1/2 1/2 1/2 3/2 1/4
PP = ( /2 1 1/2 ) 1 = ( 1/4 3/2 1/4 )
/2 1 1/2 1/2 1/2 1/4 3/2
1

1/2
= ||PTP||¥2<V2

In practice, p=1.
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Approximation property
how the discrete solutions approximate each other
| [luf-Pu?h|| < akh? |

[(u® - Pu@m).| = Ju(x;) - (u(x;;) + u(x;,))/2| < [u"(g)Ih3/2
= [[u®-PuV[ < ckh®  (|ur- u®]| = Kh?)

(We need ||u"[| << 0, so the norm is scaled by h here.)

= [u"- Pu? ||

<luh-u®]] + [Ju® - PuC@M[] + [|Pu@h) - Py2h]|
< Kh? + cKh? + [|P]|-]|u@) - y2h||
< K2 o+ ckh? o+ BK(2hY
<(1+c+4p)Kh2
CU-Boulder In Pr'aC'Hce, o= 1 rer 4|3 = 5 173 of 396

Numerical example

+ Consider again the 2-D model problem (with o = 0):
- Uy - Uy = 2[(1 - 6x%)y3(1 - y2)+(1 - 6y?)x*(1 - x?)]
inside the unit square, with u = O on the boundary.

+ We examine the effectiveness of FMG cycling to

solve the problem on (n+1)x(n+1) grids [(n-1)x (n-1)
interior points] forn=2, 4, ..., 2048.
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FMG accuracy
[le"|] < Kh?
Assume:
[le?"]] < K(2hY?
[|uh- Pu?h|| < aKh?
[Pw?]] < BIIw?"]|

induction hypothesis
approximation property (a=5)
interpolation stability (B=1)

Triangle inequality:
e |

[uh- Pv2h||
[luh-Pu?h|| + [|P(u2h - v@")[|
akh?  +  BK(2h)?
(o + 4B)Kh?
[le"]] ¢ "9"Kh?

So we need only reduce ||e"|| by "0.1"lll

1A A

=

CU-Boulder 174 of 396

FMG results

FMG cycle results & comparison with MV cycle costs

FMG(1,0) FMG(L,1) FMG(2.1) [ FMG(L1) | V(2.0) [ V(2.1)
N lelln ratio lle]ln ratio llelln ratio WU cycles | WU
2 5.86e—03 5.86e—03 5.86e—03
4 5.37e—03 0.917 | 2.49e—03 0.424 | 2.03e—03 0.347 7/2 3 12
8 |2.78e—03 0.518 | 9.12e—04 0.367 | 6.68e—04 0.328 7/2 4 16
16 | 1.19e—03 0.427 | 2.52e—04 0.277 | 1.72e—04 0.257 | 1.03e-04 4 16
32 | 4.70e—04 0.395 | 6.00e—05 0.238 | 4.00e—05 0.233 | 2.58e-05 5 20
64 | 1.77e—04 0.377 | 1.36e—05 0.227 | 9.36e—06 0.234 | 6.44e-06 5 20
128 | 6.49¢—05 0.366 | 3.12e—06 0.229 | 2.26e—06 0.241 | 1.61e-06 6 24
256 | 2.33e—05 0.359 | 7.35e—07 0.235 | 5.56e—07 0.246 7/2 7 28
512 | 8.26e—06 0.354 | 1.77e—07 0.241 | 1.38e—07 0.248 7/2 7 28
1024 | 2.90e—06 0.352 | 4.35e—08 0.245 | 3.44e—08 0.249 7/2 8 32
2048 | 1.02e—06 0.351 | 1.08e—08 0.247 | 8.59e—09 0.250 7/2 9 36
llell,=h [lu® - v,
scaled discrete total error
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Successful Scientific Inquiry

Attitude

Knowledge is good, but understanding rules!
Look for the underlying principle!

You can do it! Be positive.

But is it really right? Be critical.

Don't hope or guess. Think!

Control your emotions! Expect ups & downs.

Method
- Start simply. Reduce issue to the simplest possible case.
- Take tiny steps, but keep the big picture in mind.
- Study concrete examples.
- Look for analogies. Can A be done in any way like how B was done?

Creativity
- What do you really want? What end are you really aiming for?
- What do you really need? What you're rying may be sufficient to do
what you want, but would an easier weak result do instead?

Intelligence
- It doesn't hurt to try fo be “smart” too.

Diagnostic tools
for debugging the code, the method, the problem

Finding mistakes in codes, algorithms, concepts, & the
problem itself challenges our scientific abilities.

This challenge is especially tough for multigrid:
- Interactions between multilevel processes can be very subtle.
- It's often not easy to know how well multigrid should perform.

Achi Brandt:

- "The amount of computational work should be proportional to
the amount of real physical changes in the computed solution.”

- "“Stalling numerical processes must be wrong.”

The "computational culture” is best learned by lots of
experience & interaction, but some discussion helps.
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Tool # 2: Start simply

+ Start from something that already works if you can.

Tool # 1: Be methodical

* Modularize your code. * Introduce complexities slowly & methodically, testing
+ Test the algebraic solver first. thoroughly along the way.

+ Test the discretization next. - Start with a very coarse fine grid (ho oxymoron intended).

+ Test the FMG solver last. - Start with two levels if you can, using a direct solver or lots
+ Beware of boundaries, scales, & concepts. of cycles on coarse grids if nothing else.

If you find trouble, your first job is
to find the simplest case where

that trouble is still evident!!l
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+ Ask whether the problem itself is well posed.



Tool # 3: Expose trouble
Start simply, but don't let niceties mask frouble:
* Set reaction/Helmholtz terms to zero.
* Take infinite or very big time steps.

* Don't take 1-D too seriously, not even 2-D.
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Tool # 5: Test on Au'=0

+ The exact solution u" = O is known!
- Residual horm [|Av"|| & error norm ||v"|| are computable.

 Norms ||Av"|| & ||v"|| should eventually decrease steadily
with a rate that might be predicted by mode analysis.

* Multigrid can converge so fast that early stalling suggests
trouble when it's just that all machine-representable
numbers in a nonzero v" have already been computed!
Computing r' = f" - Av" & updating v" shouldn't have trouble
with machine precision if you have u" = 0 & thus f" = 0.
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Tool # 4: Test fixed point property

Relaxation shouldn't alter the exact solution of
the linear system (up o machine precision).
- Create a right side: "= A"u"with u" given.

» Make sure u" satisfies the right boundary conditions.

- Test relaxation starting with u: Isr" =0, is it zero

after relaxation, does u" change?

- Test coarse-grid correction starting with u™: Is the

correction zero?
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Tool # 6: Zero out residual

+ Using a normal test, try multiplying the residual by O

before you go to the coarse grid.

* Check to see that the coarse-grid corrections are O.

+ Compare this test with a relaxation-only test--the

results should be identical.
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Tool # 7: Print out residual norms

dropping superscript h when it's clear by context
- Use the discrete L% norm:
[rll, = (W Zr2)2 = hd2[|r]],.
- Output ||r||, after each pre- & post-relaxation sweep.
+ These norms should decline to zero steadily for each h.

* The norm after post-relaxation should be consistently
smaller than after pre-relaxation--by the predictable
convergence factor at least.
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Tool # 8: Graph the error

* Run a ftest on a problem with known solution (Au = 0).

* Plot algebraic error before & after fine-grid relaxation.
« Is the error oscillatory after coarse-grid correction?

+ Is the error much smoother after fine-grid relaxation?

* Are there any strange characteristics near boundaries,
interfaces, or other special phenomena?
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example Beware of residuals e = sin(knx)
MRTT2, MR4h2

-2
h2 (12 -1) Ae = p
- Relative errors:  ||e]||n vs [[Aelln _ [lrlln
[ulTn 1Al ~ h
- Absolute range: |leilln®1 & ||Aei||n & n?

llealln®1 & ||Aen||n = 4h2

- Relative errors:  consider the case u = e,
||€th:1 ||A€n||h:1
uln & [TAu[Tn
€1]lh- Aeillh 5 (2 2 1
J]lm% 1 & el s @e/ape

Moral: residuals can falsely signal convergence

when the error is smooth.
CU-Boulder 186 of 396

Tool # 9: Test two-level cycling

* Replace the coarse-grid V-cycle recursive call with
a direct solver if possible, or iterate many times
with some method known to “work" (test ||r|| to be
sure it's very small), or use many recursive V-cycle
calls.

* This can be used to test performance between two
coarser levels, especially if residual norm behavior

identifies trouble on a particular level.
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Tool # 10: Beware of boundaries
* Boundaries usually require special treatment of the
stencils, intergrid transfers, & sometimes relaxation.

+ Special treatment often means special trouble, typically
exposed in later cycles as it begins to infect the interior.

* Replace the boundary by periodic or Dirichlet conditions.
* Relax more at the boundary, perhaps using direct solvers.

* Make sure your coarse-grid approximation at the boundary
is guided by good discretization at the fine-grid boundary.
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Tool # 12: Check for compatibility
a bit ahead of schedule, but...

* Consider the problem

-u"=f with u'(0)=u'(1)=0.

+ It'ssingular: If u=1,then-u"=0&u'(0)=u'(1)=0.

- It'sis solvable iff f € Range(d,,) = (9, ) = {1}+ or f L 1.
- First fix the grid h right side: fh < fh - (<fh, 15/<1,1>)1.
- Do this on coarse grids too: 2" < f2h - (<f2h 1>/<1,1>)1.

- Uniqueness is also a worry: u" < uh - (<uh, 1>/<1,15)1,
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Tool # 11: Test for symmetry

* If your problem is symmetric or includes a symmetric

case, test for it.

* Check symmetry of the fine-grid & coarse-grid matrices:

are a;; & a;; relatively equal (to machine precision).

+ Be especially watchful for asymmetries near boundaries.
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Tool # 13: Test for linearity

also a bit ahead of schedule...

+ If you're writing a nonlinear FAS code, it should agree with

the linear code when you test it on a linear problem. Try it.

* Move gradually to the target nonlinear test problem by

putting a parameter in front of the nonlinear term, then

running tests as the parameter changes slowly from O to 1.
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Tool # 14: Use a known PDE solution

Set up the source term (f = -u" in Q) & data (g =uonT).
Do multigrid results compare qualitatively with sampled u?
- Monitor ||u - u"l],.

+ Test a case with no discretization error (u = ax?+ bx + ¢).
The algebraic error should tend steadily to O.

- Test discretization error (u" # 0). The algebraic error
should decrease rapidly at first, then stall at discretization
error level. Check error behavior as you decrease h. Does it
behave like O(h?) (h—h/2 = e—e/2) or however it should?
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Computing assignments

* Document:

norms/weights, V(v,, v,), errors, labels (table, graph)
* Use various scenarios:

Ax =0, Ax = f, varying n & v; & w, Jacobi/Gauss-Seidel
* Thoroughly test:

don't stop until you get what you expect.

compare with known solution, text, others.

study discretization & algebraic errors.

report on “asymptotic” factors.
* Be kirfd to the rZadF;r': by hand ok

code = zzz..  tables =+ Tablés & gra%hs = ++

tables & graphs & discussion (clear, concise) = +++
* Discuss, discuss, discuss:
what do you see & think? what did you learn?
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Tool # 15: Test FMG accuracy

Make sure first that the algebraic solver converges as

predicted, with uniformly bounded convergence factors.
Test the discretization using Tool # 14.

+ Compare FMG total error to discretization error for
various h. You might need to tune the FMG process here

(play with the number of cycles & relaxation sweeps).

CU-Boulder 194 of 396

Outline

Chapters 1-5: Chapters 6-10:

-V Model Problems
-V Basic Iterative Methods

Nonlinear Problems

- Full approximation scheme
- Convergence tests Selected Applications

- Neumann boundaries

- Analysis
-V Elements of Mulfi%mewor‘k D’;'i:é’; opic phroblems
. = e meshes
- Relaxation
. - Variable coefficients
- Coarsening

Algebraic Multigrid (AMG)

v Implementation . .
v Imp - Matrix coarsening

- Complexity - Multilevel Adaptive Methods
- Diagnostics - FAC
Some Theory - Finite Elements

- Spectral vs. algebraic - Variational methodology
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5. Some theory
What is A%h?

* Recall the 2-grid coarse-grid correction scheme:
- 1) Relax on Ahuh = fh on Q" o get V.
- 2) Compute f2" = I2h (fh - APvh)
- 4) Solve A%hy2h = £2h on Q21
- 5) Correct fine-grid solution v < vh + T} u?",

- Assume that e"eRange(I}, ), i. e., e" = I}, u?h for some
u?he Q2" Then the residual equation can be written
Aheh = APTH y2h= ph,

This characterizes u®", but with too many equations.
- How does A" act on I},?

CU-Boulder 197 of 396

Building A°": The Galerkin condition

* The residual equation on the coarse grid is

* We thus identify the coarse-grid operator as

A - hatn AZh= RARP

* RAP is symmetric:
If PT= aR (so that RT = (1/a)P), then
(RAP)"= PTATRT = a(1/0.)RAP = RAP.
* RAP is positive definite: P full rank = Px z 0.
If x 20, then <RAPx,x> = (1/a)<APx Px> > Ol
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How does A" act on Range(I})?

=L

o] Iélh u2h

h th
&= A" L u?

Thus, the odd rows of A"} are zero (1-D only) & r,,, = 0.
So we keep the even rows of A'IL), for the residual equations
on Q%" We do this by applying restriction, either injection or

full weighting:
IV 2 g byl 2 o g2,

We use full weighting from now on unless otherwise stated.
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Computing the i ™ row of A%"

~2h 21 T
+ Compute Azh e; , where ei7 =(0,0,...,0,1,0,...,0) ",

1 Why is this the i ™ row of A%"?

e A%h= RARP
- Tl Ah= h2[-12 -1]
o= 1 ! 1 =~ -9
i-1 i i+l
0 1 0 o
1 1 h ~2h
- 0 - 0 -— A" I, e
2 2 h2 21 €i
1 2 1 % hoh A2h
- 5 =— Ih A 12h€
@iy @y’ @iy :
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« The i™ row of A%his

The i ™ row of A%" looks a
lot like the i™h row of A"l

(2/1)2

which is the Q2" version of Ah.

* Note that IF relaxation on Q" leaves only error

in the range of interpolation, then solving
A2h 2h = f2h
determines the error exactly!

* This is generally not feasible, but this logic

CU-Boulder

motivates wanting e" € Range(I}, ) & it leads to a

very plausible representation for A",
201 of 396

Variational properties of coarsening

The definition for A%" that resulted from the
foregoing line of reasoning is useful for both
theoretical & practical reasons. Together with
the commonly used relationship between
restriction & prolongation, we have the
variational properties:

= ]}%hA hlélh Galerkin Condition

T
lélh = c (Iih ) ceNn

CU-Boulder
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scale Z-D RAP
1 11 1 1 1 1
TR ll | i 1
11 1 |2 - 1 1 A
sl il ey g
TR 121 L
EF 14— -1/4— 12— -1/4— -1/4—9
14— 0l— 12— 0} — -1/4—]
" [ B
Wxx 12— 12— 3— 12— -12—
L 14— 01— 12— 01— -1/4—]
CU-Boulder k14— 14— 12— 14— 14—

Properties of restriction
in a little more detail...

Full Weighting: Igh Qs Q% o
[/%h L RN-1 ey Gy/2-1

Ihzh has rank g—l & null space n( I;h) with dim g

CU-Boulder

-1/3 -1/3 -1/3

-1/3

-1/3 -1/3 -1/3
homework !
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Spectral properties of restriction

- How does I%h act on the eigenvectors of A hy

- Consider w,};j = sin <Jk7r>, I<k=n-1, O<j=n-1.

n

* A little algebra & trigonometry shows that

k
(I}%hwﬁ)j = cos? (%) wi@

= Ckw]%?7
for 1 <k =n/2-1.
~ - 2
ck = 0(1) ct¥1..cn=O(h) 205 0£396
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Spectral properties (cont'd)

« Letk'=n-k for 1<k<n/2-1, so that
n/2+1< k' < n-1.

* A little algebra & trigonometry shows that

k

— 2h
= —Skwk’j .

s1= O(h?) ... spzil= O(1)
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Spectral properties (cont'd)

. e, Iih [k* mode on O"] = ¢, [ k™ mode on 0?"]

O n=8, k=2

2h

o n=4, k=2
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Spectral properties (cont'd)

ie., ]}%h [(n - k)™ mode on O"] = -s, [k mode on 0?"]

OMn=8, n-k=6

2h

Ohin=4, k=2
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Spectral properties (cont'd)

ck = O(1)

- Summarizing: /
2h

[/%h W,i’

I,fhw:'/z =0 N
+ Complementary modes:

W, = span{w]l, w}}
]}%h /4 k.:>{wl%h }oo

CU-Boulder

Properties of interpolation

Interpolation: Iélh: QYees Q" or
]élh RNV 2-] e 01

1
n=8: 2
1

1

Y/
121h =5 2
1

1
2
! L]
1%, has full rank & null space {0},

CU-Boulder

Cr Wk 15ksg—1
I,%hw,{b = -5 w,%h k'=n—k

s1 = O(h?) ... Sn/2-1 ® O(1)

209 of 396
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- Letm, = APgh.

Null space of restriction

- Observe that n(I2") = span(A"é"), where i is odd &

gh is the i™ unit vector.

0 00 0-12-100

+ While the v, looks oscillatory, it generally contains

all Fourier modes of A"

N
n,= Zakwk a,=0
k=1

- All the Fourier modes of A" are needed to represent

the null space of restriction!
210 of 396
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Spectral properties of interpolation

+ How does Ié’h act on the eigenvectors of A 2h 5

+ Consider (wi"), = sin (M) 1=<ks=n/2-1,0<j=n/2.

n/2

+ A bit of work shows that the modes of 4 2h are

NOT “preserved"” by [élh, but that the space W, is
"preserved"”:

km . km
I3 wih = cos? <%> wy — sin® <%> w
= csz — Ssz/ s
0396

CU-Boulder



Spectral properties of interpolation

h 7 p
Lpwe' = e wf = spnft

+ Interpolation of smooth Q%" modes excites
oscillatory modes on Q’

+ Note that if & <<§ , then

h , 2h kQ h kQ h
IQhwk = 1-— O m wk + () m U}k/

~uf

. Iélh is 2"d-order interpolation.
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Use all the facts to analyze the

coarse-grid correction scheme
relax only before correction

h
1) Relax once on Q": VI < Ry + B : :
1 error propagation matrix
not restriction!

2) Compute & restrict residual: £ < l,?h (fh—alvh).

-1
3) Solve residual equation: v = ( A%y T

. . . h
4) Correct fine-grid solution: v/« v/ + I3, vt

The entire process appears as

Vi RvE+B i I (4P 2 (- AMR Y+ B )
The exact solution satisfies

uh = Ryh + B fi + I8 (A2 =112 (f" = APRuh + B 1)
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Range of interpolation

* The range of [élh is the span of the columns of [élh :

+ Let &; be the i column of Iélh i

gh - bywl , b =0

* All the Fourier modes of A " are needed to represent
Range( I7,).
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CG error propagation

* Subtracting the previous fwo expressions, we get
eh —| 1 - Igh(AZh)_l [5}[ A" R e"

eh— CcGeh

+ How does CG act on the modes of Ah? Assume e
consists of the modes w}! & wj for 1<k<Z-1
2
& k'=n—k.

- We know how R, , A" 7, (a1 1k
act on wi & wi.
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CG error propagation

For now, assume no relaxation. Then
W, = span{w}, wj }

is invariant under CG:
CGW,’{’ = 5 w,é’ + 85 w,’gr
CGw,i’/ = ¢ W]i‘ + ¢y W]i‘r

where

k k
s, =sin’ (_ﬂj ¢, = cos’ (_727)
2n 2n

s1= O(h?) ... Snz-1 2 O1) ck=0(1)
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CG with relaxation

Next, include one relaxation sweep. Note that
error propagator R, preserves the modes of A"

(although this is of fen unnecessary). Let A,
denote the eigenvalue of R, associated with w,.

For k < n/2-1:

Wk — )\.k@ Wk + }\k@k’ Smalll
kae@ Ck Wk +
km

i’ ( ) 2 [ kﬂ:j
s, =sin’| — ¢, =cos’| —
2n 2n
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Cr Wi Small!

CG error propagation for k<«n

* Consider the case k << n (extremely smooth &
oscillatory modes):

o (g0 o)
oo (o)) e (-0 )

+ Hence, CG eliminates the smooth modes but does
not damp the oscillatory modes of the error!
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Crucial observation

+ Between relaxation & coarse-grid correction,
both smooth & oscillatory components of the
error are effectively damped.

* This is the "spectral” picture of how multigrid
works. We examine now another viewpoint,
the "algebraic” picture of multigrid.
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Recall the variational properties

All the analysis that follows assumes that the
variational properties hold:

A = hatn, Galerkin Condition

T

ceR

/ 2
Iy, = ¢ (I;")
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Algebraic interpretation of C6

consider the subspaces that make up Q" & Q2

From now on, 'R( ) means
Range & 'N( )" Null Space.

Because the Fundamental Theorem
Iy, of Linear Algebra shows that

N2 = RO T
or

1
N(IP) = R(IE)
I5, transfers errors?
Does If" tr@ngfer errors?
So we redifynedre/bBbelors2"An) 1212
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Fundamental Theorem of Linear Algebra
N(B) = R(B™)L
* x &g N(B) any yTR(BT) some z
= <X,y >=<x,BTz2>=<Bx, 2> = 0.
= x ¢ R(BT)L
= N(B) c R(BT)+.
s xeR(BM) any z z = Bx
= 0 =<x, BTz> = <Bx, z> = <Bx, Bx>.
= x ¢ N(B)

=N (B)>R(BT)-.
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“Energy” inner product & norm

* Inner product symmetry:
<AXy> = <X,Ay> = <Ay X>.
* Inner product linearity:
<A(ax+by),z> = <aAx+bAy,z> = a<Ax,z> + b<Ay,z>.
+ Inner product positive definiteness:

<Axx>>0 & <Axx>=0 = x=0.
+ Norm:
<Ax x> is an inner product = <Ax,x>2 is a horm.
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Subspace decomposition of Q"
o« If the N(I2"ah), then, for any u?h, we have
0 = (IZ"Ahyh, u2h) = ( AhuR Thu?h )

o)
h 2/
R(lzh)th(]7 ),

“energy”
where x L » » means <A x,y> = 0. mner‘ product

* Moreover, any e’ can be writtenas e = st + ¢
where s"€R(12,) & zhEN(lzhA ).
* Hence, we get the “energy-orthogonal” decomposition

Q" — R(IL) @ N(I" 4,

errors touched errors invisible
by coarse grid to coarse grid
CU-Boulder 225 0£396

Algebraic analysis C6

* Recall that (without relaxation)
-1
CG =1-14 (4% " 17"a",

- First note that lfshER(IZh) then CG s* = 0.
This follows since s# = 1%, 4% for some ¢% € Q%
& therefore
CGsh = | 1- 18 (a2 " 2l |1h g 2 0

A 2h by Galerkin property
+ It follows that N(CG)=R( L1, ), that is, the null
space of CG is the range of interpolation.

What does this imply?
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Characteristics of the subspaces

- Since s = 1l ¢ for some ¢% € Q%'w

assocuaTe s with the smooth componen‘rs of e’
But, s” generally has all Fourler' modes in it.

Recall the basis vectors for 2, t

- Similarly, we associate 1" wﬂrh oscillatory

components of e, although 7" generally has all

Fourier modes in it as well. Recall thatn(77") is

spanned by n; = 4”2, , so N ( 1,3’7/1’7) is spanned by

the unit vectors ¢" =(0,0,...,0,1,0,...,0)" for odd i,

which “look" oscillatory. j
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More algebraic analysis of C6

+ Next, note that if zhEN(I,fh "y, then

CGt = | 1- 1 (4% " 2 gt |
%_J
0

= cGi" = "
. . . 2h h
+ Thus, CG is the identityon N ( I} A").
What does this imply?

Together: C6(s" +1")=1"
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How does the algebraic picture
fit with the spectral view?

We may view Q" in two ways:

Q h - Low frequency modes @ High frequency mode
1<k<n/2 n/2 <k <n

that is, ‘

h Illuminates
Q" = L @ H relaxation

or (Jacobi)
Illuminates

Q" = R(I}) ® NI4T, o

exact

Are these "orthogonal” decompositions?
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How it actually works (cartoon)

H N( ]/3/1 1)
h
[/1 oe
wla e k
__— L
Wsmall k
— R(1%,)
S
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Actually, each view is just part
of the picture

* The operations we've examined work on different spaces!

+ While N( IzhAh) is mostly oscillatory, it isn't H ,
& while R( 12,1) is mostly smooth, it isn't L.

- Relaxation “eliminates” error from .

* Coarse-grid correction eliminates error from R ( 12,1)

CU-Boulder 230 of 396

C&elmumdv “eh
\H&mn‘ actua i ar']%%cﬁ%)

211 1
] h

Why is this
working well?

h
R( [Z]h)
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What if L points away from R(I), )?

N( 174ty
v T h
e
t\\\ \.

7
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6. Nonlinear problems
HANG ON I

How should we approach the nonlinear system
A(u)=f
& can we use MG to solve it?

A fundamental relation we've relied on is the linear
residual equation:
Au-Av=f-Av = Ae=-r.
We can't rely on this now since a nonlinear A(u)
generally means
A(u) - A(v) 2 A(e).
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Outline

Chapters 6-10:

Nonlinear Problems

Chapters 1-5:

-V Model Problems
-V Basic Iterative Methods - Full approximation scheme
- Convergence fests Selected Applications

- Neumann boundaries

- Analysis
-V Elements of Mulﬁ*%mewor.k D’;'i:é: opic p:oblems
. e meshes
- Relaxation
. - Variable coefficients
- Coarsening

Algebraic Multigrid (AMG)
- Matrix coarsening
*  Multilevel Adaptive Methods
- Diagnostics - FAC
v/ Some Theory

- Spectral vs. algebraic

v Implementation
- Complexity

Finite Elements

- Variational methodology
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The nonlinear residual equation

We still base our development around the residual
equation, now the nonlinear residual equation:

Au)=f
= A(u)-A(v)="f-A(v)

= | Alu)- A(v)=r

How can we use this equation as the
basis for a solution method?
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Newton's method for scalar F:)i—M

Best known & most important nonlinear solver!

*We wish to solve F(x) = 0.

Ex: F(x)=xex-1, F'(x)=(1+x)ex

exponent, not error

+ Expand F in a Taylor series about x :
F(x + s) = F(x) + sF'(x) + s 2F" ().
Ex: (x+s)e**s)-1=xeX-1+s(1+x)e*+h.o.t.
* Dropping higher-order terms (h.o.t.), if x + s is a solution,
0 = F(x) + sF' (x) = s = -F(x)/F' (x).

« We thus arrive at Newton's method:
x + x - F(x)/F' (x)
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Newton for systems

+ The system A(u) = f in vector form is

ai(ui, ug, ..., Up—1) fi
as (Ui, U2,y .oy Up—1) f2
G/N(’LLl,UQ,...,U”,1) fnfl

Expanding A(v + e) in a Taylor series about v:
A(v+e)= A(v)+ J(v)e + ho.t.

J(v) = (gzj (v)) .
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Newton's method for systems

¢ Ex: - u"(x)+u(x)e“™ = f may be discretized as

271,;;11,2 4 ul(u] f(ll)
ay(u) .
as(u) o :
A(u) = ) = —ulfnfgufuﬁl + uet _ f(Tz) = f
anfl(u) . ) . :
_un,—2h22U17,—1 + unil(,u,”,l f(mufl)
Jacobian
* Taylor series about v: A(v+e)= A(v)+ J(v)e + h.o.t.
24 Qo) = error, not exponent
0= (%), = 4 Al
7 (L +uv)
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Newton for systems (cont'd)

- J(v) is the Jacobian

day far . _Oa1
8’[1,1 811,2 8un,—1
das das . das
8’LL1 8’&2 8un,1
J(v)
6(11171 aan,fl . aanfl
Ouy Ousg OUp—1

« If u=v+eisasolution, f = A(v) + J(v)e + h.o.t., so
e ® [JVI(f - A(V)).
+ This leads to the iteration

Vo v+ [TWTHE - A(W)
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Newton's via the residual equation

* The nonlinear residual equation is
Alv+e)-A(v)=r.

+ Expanding A(v + e) in a fwo-term Taylor series about v
& ignoring h.o.t.:
AV)+J(V)Eé-A(V)=r Ere
or
J(vV)Eé=r.

+ Newton's method is thus:

v < v+[IMWIr, r=f-A()
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What is nonlinear relaxation?
A(u)=f

* Nonlinear Gauss-Seidel:
Foreachi=1,2, .., n-1:
Change the value of v, so that the i™h equation
is satisfied: (A(v)) =f..
+ Equivalently:
Foreachi=1,2, ., n-1:

Find s € } such that (A(v + s ¢), = f;,

where ¢ is the i™h canonical unit basis vector.
CU-Boulder 243 0f 396

How does multigrid fit in?

* One obvious method is to use multigrid to solve
J(v) € = r at each iteration step. This method is
called Newton-MG & can be very effective.

+ However, we might want to use multigrid ideas to
treat the nonlinearity directly.

+ To do that, we need to specialize multigrid
components (relaxation & coarsening) for the
nonlinear case.

CU-Boulder 242 of 396

How is nonlinear Gauss-Seidel done?

« Each (A(v)), = f, is a nonlinear scalar equation for v,.

We can use the scalar Newton's method to solvel

« Example: - u"(x) + u(x) e“™ = f may be discretized
so that (A(v)), = f, is given by

~Vie1+ 2V = Vg L
) +vie'l =f; 1<i<n-1

h
« Newton iteration for v, is given by

“Vie1+2vi = vigg

Vi _ ¢
. +ve fi
Vl- <~ Vl- - 3
Vi
- T ( 1+ Vl')e !
h
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How do we coarsen
for nonlinear multigrid?

* Recall the nonlinear residual equation
Alv+e)-A(v)=r.

* In multigrid, we obtain an approximate
solution v" on the fine grid, then solve the

residual equation on the coarse grid.
y2h ol Tehyh |

* The residugl equgiierrgh Qzappfrs as
| N A2ho reh?

" 2hph
We should have a routine for that. Ifren
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We've obtained a coarse-grid
equation of the form A2"(u?") = f2h

+ Consider the coarse-grid equation:

— ~— —~— —
2h 2h
f

u

coarse-grid unknown all quantities are known

-« We solve 4% (u?) = 2" for u? = [?'vh + 21 &
obtain

2h 2h _ ]}%h Vh

e =Uu

* We then apply the correction:
v — Yl + Iélh e2h
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Look at the coarse residual equation

* We must evaluate the quantities on £22" in
AZh (v2h + g2h) - A2h (y2h) = p2h

- Given V", a fine-grid approximation, we restrict
the residual to the coarse grid:
2
2= - At )

- For v2h, we restrict vt by vt = I]fh vh
Thus,

AP (I w2y = g (k) w1 (rh - AP ()
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Full approximation scheme (FAS)
2-grid form

- Perform nonlinear relaxation on A"(u") =" +o
obtain an approximation v/

+ Restrict the approximation & its residual:
v2h Ifhvh 2 ]}%h (fh —Ah(vhY).
* Solve the coarse-grid equation:
A2h(u2h) — A2h(V2h)+ r2/’l: Iihfh +A2h(15hvh)_I;hAh(vh).

+ Extract 2h approximation to h error:
o2 = 2 _ 2k

+ Interpolate & correct:

v —yh 4 Iélh e,
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A few observations about FAS

AP (o w2y = APy w12 - al(vhy)

+ If Aisalinear operator, then FAS reduces directly to

the linear two-grid correction scheme:
/12’7(195Z +e2hy = 4% (1,3&1) + I - Aol

* An exact solution to the fine-grid problem is a fixed

point of the FAS iteration: 0
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Still more observations about FAS

+ A true multilevel FAS process is recursive, using
FAS to solve the nonlinear Q2" problem using Q*h.

Hence, FAS is generally employed in a V- or W-
cycling scheme.
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A few more obse
AZh(I%hvh +e2hy =

+ The FAS coarse-grid equation can be written as

AZh( u?hy = th + r%h
where 1" =AY (V") - 1A (V") is the so-called tau
. 2h .
correction term & /7 is the original Z2h source ferm,
provided you choose it that way: /2" =1f"

- Ingeneral, since " =0, the solution u? to the FAS
coarse-grid equation is not the same as the solution
to the original coarse-grid problem

* The fau correction is as a way to alter the coarse-
grid equation to enhance its approximation properties.
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Even more observations about FAS

* For linear problems, we use FMG to obtain a good
initial guess on the fine grid. Convergence of
nonlinear iterations depends critically on having a
good initial guess.

* When FMG is used for nonlinear problems, the
interpolant ]é’h u?l is generally accurate enough
to be in the basin of attraction of the fine-grid
solver.

* Thus, whether FAS, Newton, or Newton-multigrid
is used on each level, one FMG cycle should provide
a solution accurate to the level of discretization,
unless the nonlinearity is extremely strong.
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Intergrid transfers for FAS

* Generally speaking, the standard operators (linear
interpolation, full weighting) work effectively in
FAS schemes.

* For strongly nonlinear problems or for the coarse-
grid approximation that is to become a fine-grid
initial guess, higher-order interpolation (e.g., cubic
interpolation) may be beneficial.
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Example: Newton-MG vs. FAS

- PDE (er, ODE):
- (%) + u(x) e'® = f(x).

+ Discretization:

Vi 1 42V, —V:
J -1 J T~ V] b _
. +y o =1
h J -

CU-Boulder 255 0f 396

What is A%"(u?") in FAS?

As in the linear case, there are two basic possibilities:

1. A%h(u?") is determined by discretizing the nonlinear
operator, A(u), in the same fashion as was employed
to obtain AM(u"), except that the coarser mesh
spacing is used.

2. A?h(u?") is determined from the Galerkin condition

A2h(u2h): IZhhAZh(IzthZh)
where the action of the Galerkin product can be
captured in an implementable formula.

The first method is usually easier & more common.
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One Newton-MG step

+ Step 0. Given v, form the grid h linear correction equation:
+ v Vi +2vj =vja v,
w A@ +(1+v_,-)e= r=fi- (’—2” +ve )

" unknowns . o
Initialize the Newton correction approximation: e = 0.

- Step 1: Relax on the grid h linear equation.
+ Step 2: Solve the grid 2h error correction equation:

@) 670 NI
M+(1+Vz/)€=r2, —< ) 5 . +(1+V2,‘)€“/€2_/)

1) unknowns h

+ Step 3: Correct the grid h Newton correction:

h 2h
e < e+I2/e
n

+ Step 4: Stop if you've "solved” the linear equation well

enough for Newton correction e & set v < v +e. Else,

leave v alone & return to Step 1.
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One FAS step

+ Step 0. Given v, form the grid h nonlinear equation:
V-1t Ve,
> +viel =f;

h
+ Step 1: Relax on the grid h nonlinear equation to improve v.
—Vio1 + 2V = Vi v
‘ ‘ .eJ —7.
2 +viel -f
V:, «— V. —

i<V 2 .
2 +(1+v)e

+ Step 2: Solve the grid 2h FAS correction equation:

. + - va ) V/w], 2h

ﬂ @ @ + (vlz’v,- +@)e"'—v£_,e“ =" )
(1) unknowns

+ Step 3: Correct the grid h approximation v:

h 2h
v—v+1l,e
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Discretization of the nonlinear example

* The operator can be written (sloppily) as
1 -1 h
( o ‘1\“51,_/ syul e =1
-1

2
O Y,

Y
("),

+ Relaxation (nonlinear Gauss-Seidel) is given by

AN -1

h
+Y(1 +v{1/)evi,j

h h
Vij < Vij o~

}‘I\J‘b —~
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Nonlinear problems: 2d example

« Consider

CU-Boulder

“Au(x,y) 4+ yu(oy) Y 2 f(x,y)

on the unit square, [0,1] x [0,1], with homogeneous
Dirichlet boundary conditions & a regular h = 1/128
Cartesian grid.

Suppose the exact solution is
u(x,y) = (x2=x3) sin(3ny)
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FAS & Newton's method on
—Au(x,y) +vYu(x,) ) f(x,y)

n=128
convergence factor is for the last cycle

FAS V(2,1)-cycles until [|r|| < 107°,

Y
1 10 100 1000
convergence factor| 0.135 0.124 0.098 0.072
number of FAS cycles 12 1 11 10

Newton's Method with exact inner solves until ||r|| < 10-1°,

Y
1 10 100 1000

convergence factor|4.00E-05 7.00E-05 | 3.00E-04 | 2.00E-04

number of Newton iterations 3 3 3 4

CU-Boulder

260 of 396



Newton, Newton-MG, & FAS on

—Au(x,y) +Yu(x,y) e

Newton uses exact solves, Newton-MG is with a fixed

u(x,y)

n=128, y = 10

= f(x,y)

number of inner V(2,1)-cycles for the Jacobian problem,
overall stopping criterion ||r|| < 1071,

Method ite?:ttig;s itelpar][iec})rns Megaflops
Newton 3 1660.6

Newton-MG 3 20 56.4
Newton-MG 4 10 38.5
Newton-MG 5 5 25.1
Newton-MG 10 2 22.3
Newton-MG 19 1 24.6

FAS 1 271

CU-Boulder

Compare FMG-FAS & FMG-Newton-MG

u(x,y)
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—-Au(x,y) +Yu(x,y)e = f(x,»)
n=128, y = 10
Done lll
Cycle| ||, Ju =], Mflops Ir'[, |« =", Mflops |Cycle
|FMG-FAS 1.10E-02 2.00E-05 3.1 1.06E-02 2.50E-05 2.4 FMG-Newton |
FAS V| 6.80E-04 2.40E-05 54 6.70E-04 2.49E-05 4.1 Newton-MG
FAS V| 5.00E-05 2.49E-05 7.6 5.10E-05 2.49E-05 58 Newton-MG
FAS V| 3.90E-06 2.49E-05 9.9 6.30E-06 2.49E-05 7.5 Newton-MG
FAS V| 3.20E-07 2.49E-05 12.2 1.70E-06 2.49E-05 9.2 Newton-MG
FAS V| 3.00E-08 2.49E-05 14.4 5.30E-07 2.49E-05 10.9 Newton-MG
FAS V| 2.90E-09 2.49E-05 16.7 1.70E-07 2.49E-05 12.6 Newton-MG
FAS V| 3.00E-10 2.49E-05 18.9 5.40E-08 2.49E-05 14.3 Newton-MG
FAS V| 3.20E-11 2.49E-05 21.2 1.70E-08 2.49E-05 16.0 Newton-MG
5.50E-09 2.49E-05 17.7 Newton-MG
1.80E-09 2.49E-05 19.4 Newton-MG
5.60E-10 2.49E-05 21.1 Newton-MG
1.80E-10 2.49E-05 22.8 Newton-MG
5.70E-11 2.49E-05 24.5 Newton-MG
263 of 396
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Compare FMG-FAS & FMG-Newton-MG

—Au(x,y) +Yu(x,y) V) 2 f(x,)

* We do one FMG cycle using one FAS V(2,1) -cycle
as the "solver” at each new level. We then follow
that with as many FAS V(2,1)-cycles as is needed to
obtain ||r|| < 101°,

* Next, we do one FMG cycle using a Newton-MG
step at each new level (with one linear V(2,1)-cycle
as the Jacobian "solver.”) We then follow that with
as many Newton-multigrid steps as is needed to

obtain ||r|| < 1010,

Don't try this at home !l!
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Remembering coarse-grid correction

L

Relax (damped Jacobi) to smooth e = u - v: Ih /|\

v<v-wD(Av - f). /o\\
Form the residual equation Ae = r: e : : o

Ae=A(u-v)=f-Av=r.

Use premise that smooth error = e = I} e?":

AL} e?h fewer unknowns

Use transpose I = (I5,)T to reduce equations:

2" = I?hr, fewer equations

AZh
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Motivating FAS for nonlinear A

A(v+e)=f — A2h(y2h + g2h) = “f2he

AP v v ey = 4P vy w1 - A (vhy )
? ?

What overriding principle can we find to get from h to 2h?
With known v, how do we discretize a PDE of the form
Alv+e)=f?

Example:
yud'-u"=f — y(v+e)(v+e)-(v+e) =f.

Expand to get an equation in e of form g + ae + be' + ...:
YW -V +y(Ve+ve +ee' )-e" = f.
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Leading to FAS..

yuu'-u" = f — A(v+e) = f — y (Vietve'+ee' )-e" = f-A(v)

* Fine-grid residual equation (at h point 2):

h h h h h h h th h
Y Vajar =Vojo1 n n € —€j n € =€l =€ + 46 =€) h

ALY VT, t % ="

* Coarse-grid residual equation (at 2h point j):

" h v h 62/1 62/7 62/1 62/‘1 62/1 n 262/) eZh

2j+2 — V2j2 2h h j+l —C€j-1 2h Cj+1 —Cj-1 —Cj+l j —Cj- 2h _h

Y j +Yy e’ + 2 =(r),
4h 4h 4h (2h) /

* FAS

AP w2y = g () = B (- AR (k) )
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Differential residual equation

y(Ve+ve' +ee')-e" =f-A(v)=r(v)

* Right side (analogous to injection):
r(v) = r" = r(x,).

* Coefficients:

v v v(x), V= (V) () - V(X)) (2h).

e Unknowns:
e— eJ'h’ e — (e’)J’h = (ej}ll - ejr-\l)/(Zh),

e — (&)= (caj':1 - Zeg‘ + ej'fl)/hz.
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Outline

Chapters 6-10:

-V Nonlinear Problems

Chapters 1-5:

v Model Problems
-v/ Basic Iterative Methods - Full approximation scheme

- Convergence tests Selected Applications

- Analysis - Neumann boundaries
- Elements of Multi DA!“IiSO* opic problems
. %mewor‘k = r%b e meshes
- Relaxation

- Variable coefficients
Algebraic Multigrid (AMG)
- Matrix coarsening
+  Multilevel Adaptive Methods
- Diagnostics - FAC
*v/ Some Theory
- Spectral vs. algebraic

- Coarsening
-v/ Implementation

- Complexity

Finite Elements
- Variational methodology
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7. Selected applications

7a. Neumann boundary conditions

+ Consider the 1-D problem
-u"(x) = f(x), O0<x«<1,

u(0)=u(1)=0. «227?
- We discretize on the interval [0,1] with h=1/n
grid spacing & nodes x; = jh, j=012, .., n.

+ We extend the interval with fwo ghost points:

0 X 1
o—0—0 —©@ @ @ @ @ o—0
-1 0 1 J-1 J j#l n-1 n n+l
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Eliminating the ghost points

Use the boundary conditions to eliminate u_; & u

u —u u —Uu
1 “L_( :> u, =u, n+l n-1
2h

TZO :> U, =u,,
Eliminating the ghost points in the j=0& j=n
equations gives the (n+1)x(n+1) system of equations:

n+1:

—u; +2u;—u,,

7 =f; 1<j<n-1
2u, —2u —2u,  +2u,
th =1y };2 =1,

CU-Boulder
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Central differences at boundary

+ We use differences as before, but now also for

the derivative in the Neumann condition:
0 0 0 o0 o0 o0 o

@ o—0
-1 0 1 1 J+l n-l1 n n+l
)= ‘Zhl,‘ W)= —u, ‘+IZI?‘ —u, W(l) = U, +i;¢/ —U,
* This yields the system
—u,_ +2u.—u,
J-1 J J+1 .
e f; 0<j<n
W—u, Uy —U . _ 0
2h 2h
CU-Boulder 270 of 396

Write the system in matrix form

- We can write Ahu" = f', where

2 2
-1 2 -1
O -1 2 =2
h’ R
-1 2 -1
-2 2

Note that A" is (n+1)x(n+1) & nonsymmetric, & the
system involves unknowns u, & u! at the boundaries.

CU-Boulder
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We must consider compatibility

*+ The problem - u“(x) = f(x), for 0 < x < 1, with
u'(0) =u'(1) = 0, is not well-posed!
« If u(x)is asolution, then so is u(x) + constant.

- We cannot be certain a solution exists. If one does,
it must satisfy
1 1

1
—fu"(x) dx = ff(x) dx =) —[w(1)-w(0)] = ff(x) dx
0 0 0

1
= |o= ff(x)dx
0

* This integral compatibility condition is necessary!
If f(x) doesn't satisfy it, there is no solution!
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The discrete problem is not well posed
+ Since all row sums of A" are zero, then 1" € N(A").

- It's easy to see that dim(N(A")) = 1, so N(A") = span{1"}.
- By the Fundamental Theorem of Linear Algebra, A"u" = £

has a solution if & only if fh e 299

- For our simple case: N((AMT) = ¢(1/2,1,1, .., 1,1/2)".

- Thus, Ahuh = f" has a solution if & only if
fh1c/2,1,1,..,1,1/2)".

* So, the discrete compatibility condition is

1 n—1 1
SRS+ 51 =0
j=1
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The well-posed system

* The compatibility condition is necessary for a solution to
exist. Ingeneral, it is also sufficient:
- 92/9x? is a well-behaved operator on
the space of functions u(x) with zero mean.

* Thus, we may conclude that if f(x) satisfies the
compatibility condition, then the problem is well-posed:
-u'(x) = f(x), O0<x«<1,
u'(0)=u(1)=0,

Jolu(x)dx = 0.
* The last says: of all possible solutions u(x) + constant, we

choose the one with zero mean.
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We have two issues to consider

- Solvability: A solution exists iff f" € R(A) = N((A")T)-.

. : ?22? -
+ Uniqueness: If u"is £77 ensoisul+vh for
any Ve N(Ah)/o.seln‘r

+ Note that if A" = (A")T, then N((AM)T) = N(AM)
& solvability & uniqueness can be handled together.

* This is easily done. Multiply the first & last equations
by 1/2, giving
1 -1
-1 2 -1
Ah :LZ —1 2 —2 )
h Lot
-1 2 -1
CU-Boulder -l 276 of 396



The new system is symmetric

A ~h
- We have the symmetric system A"u" = f :

11 a2

-1 2 -1 2P
1 -1 2 -1 ul

h? SO S

Un,
ERAR N >
+ Solvability is guaranteed by ensuring that ]Afh is
orthogonal to the constant vector 1h:

(7' 1)=27 -
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The well-posed discrete system
back to central differences @ boundary

+ The (n+2)x(n+1) system is:

+2u —u,,
1€j<n-1

4 for one-sided scheme
” 1 + Ll
hz

zbt;' =0 (choose the zero mean solution)
j=0
or, more simply = =
Au'=f
uh, 1 > =0
CU-Boulder 279 of 396

One-sided differences at boundary
a similar result

* No ghost points:

*—o @ @ @ ® o—0—0
0o 1 1 J+l n-1 n

U, —u, =i, +2u;—u u,—u
u (0) 21 "o ] 0 ll”(]): j=1 ,1 Jj Jtl U‘(I) ~ N n—1
-

This yields the system

—u;  +2u;—ug,

) =/ l<j=<n
u,—u u,—u, ,
h20:O h2 1_0
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Multigrid for the Neumann problem

+ We must have the interval endpoints on all grids
h h h

h
X() x 1 xn/ 2 xn
*—o ® @ @ 4 @ @ L
® @ @ ]
x2h 2h 2h
O nl4 'xn /2

* Relaxation is performed at all poin’rs including endpoints:

/\]
et entfy it -1
+ We add a global Gram-Schmidt single step after relaxation

on each level to enforce the zero-mean condition:
h h h
vyt - 1
< lh, lh >

h2 ~h
+ fn
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Interpolation must include the
endpoints

We use linear interpolation:
o—e —©@ @ © o—© @
VAN VANYAYVAY
° ° ° ° o

Jz 12
1

2 12

= 1

12 12
1

172 172
1

teeeeeott
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The coarse-grid operator

+ We compute the coarse-grid operator using the
Galerkin condition

~2h
a2
=0 1
gl 1 0 1 -1
-1 2 -1
1l € L o1 -1 2 -1
2/‘[ 2 A =7772 ] )
~ 1 1 1 4 -
a4 e 0o - -1 2 -1
2/1 2 2 _
2h 2h 11
2a e L - L
' e 4
CU-Boulder 283 of 396

Restriction also treats
the endpoints

For restriction, we use Iﬁh = ;(]é’h) T yielding the

values

~2h 1 ~h /\h
f 0o Ef 0 f 1
/\,2/1 _ /\h 1 /\_h + 1 /\‘h
/i = fz,—1 5/12]‘ Zfzjﬂ

/\2/1 _ 1

f n - 4]?1 1 f n
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Coarse-grid solvability

~h N -
+ Assuming f satisfies f’ ,1") =0, the solvability
condition, we can show that Theore‘rically the coarse-
, 2 ~ .
grid problem 4~ u? = 17" (f ~4"v") is also solvable.

* To be certain numerical round-off does not perturb
solvability, we incorporate a Gram-Schmidt-like step
each time a new right-hand side ‘/?Zh is generated for
the coarse grid: <f2h 1?f7>

22h 2h

~2h _ 1
< 12]1 , 1211>
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Neumann problem: An example
Consider the problem

-u"(x) =2x-1, 0 <x<1, u'(0) =u'(1) =0,
3

2
which has u(x) = % - % +c¢ as a solution for any ¢

(c = -1/12 gives the zero mean solution).

grid size h average Huw) " number
n h conv. factor i of cycles
32 6.30E-11 0.079 9.70E-05 9
64 1.90E-11 0.089 2.40E-05 10 V(z 1)
128 2.60E-11 0.093 5.90E-06 10 !
256 3.70E-11 0.096 1.50E-06 10 cycles
512 5.70E-11 0.100 3.70E-07 10
1024 8.60E-11 0.104 9.20E-08 10
2048 2.10E-11 0.112 2.30E-08 10
4096 5.20E-11 0.122 5.70E-09 10
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We consider two types of anisotropy

« Different coefficients on the derivatives
- Uy - Sl‘lyy = f

discretized on a uniform grid with spacing h .

- Different mesh spacings:

>

I

=
S | =

=

}hy ho=

L'J

CU-Boulder hy 287 0f 396

- All problems considered thus far have had -h-2 as
the of f-diagonal entries.

CU-Boulder

Both problems lead to the same

“Uo Lk Y2k Wk

7. Selected applications

7b. Anisotropic problems

We consider two situations when the matrix has

two different constants on the of f-diagonals.
These situations arise when

» the (2-d) differential equation has constant but
different coefficients for the derivatives in the
coordinate directions

» the discretization has constant but different mesh
spacing in the different coordinate directions

stencil

—Uj g1+ 2U5 g

- ”j,k+1

CU-Boulder

h2

—Uj g g ¥2Uj = Uk

U g ¥ 22U U gy

h

2

+

|

h

Je

jz
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Why standard multigrid can fail

1 —€
A“:}TQ ( -1 242 1)

Note that A" has weak connections in the y-direction.
MG convergence factors degrade as ¢ gets small, with
poor performance already at ¢ = 0.1.

- Consider the limiting case ¢ = 0 4"~ ( R )
+ Collection of disconnected 1-D problems!

Point relaxation smoothes oscillatory errors in the
x-direction (strong connections), but with no
connections in the y-direction, the errors in that
direction will generally be random; point relaxation
provides no smoothing in the y-direction.
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Two strategies for anisotropy

-+ Semicoarsening: The equations are weakly
coupled in the y-direction, so we can't expect the
error after point relaxation to have any connection
to the errors above or below it. We therefore can &
should coarsen only in the x-direction.

- Line relaxation: The equations are strongly
coupled in the x-direction, so we could solve
simultaneously for all the unknowns along lines of
constant y. This should expose whatever weak
smoothness there might be in the x-direction, which
should allow standard coarsening.
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We analyze weighted Jacobi

The eigenvalues of the weighted Jacobi iteration
matrix for this problem are
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Semicoarsening with point relaxation

h?

+ Point relaxation on 4= 1 ( 1 242 -1 | sSmoothes in the

—€

x-direction. Coarsen by removing every other y-line.

Qh D Q2h

We do not coarsen along the remaining y-lines.

* Semicoarsening is not as "fast" as full coarsening. The

number of points on Q2" is about half the number of
points on Q2", instead of the usual one-fourth.
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Interpolation with semicoarsening

+ We interpolate in the 1-D way along each line of
constant vy.

+ The formulas for interpolating the correction
from the coarse to the fine grid for the 2D model

problem are
h —_ vh 2h
Y2j.k = V2jk t Vik
2h 2
Vitk TVitlk
vh. = yh. +
2j+ 1,k 2j+ 1,k 7
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Line relaxation

Vi, +(2+28)y, -V =h2fi’j+v +v

i+1,j i+l ij-1

* Nice 1D system, analogous to the discretization of
-u"+au=g, a=2ch?>0

* One sweep of line relaxation consists of solving a tridiagonal
system for each constant y. Total cost is an optimal O(n?).

Each solve can be done by Gaussian elimination since the
system is fridiagonal, or a 1D multigrid solver (useful for
generalization to higher dimensions).

* The individual lines can be solved simultaneously in a Jacobi

way or sequentially in a Gauss-Seidel way.
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Line relaxation with full coarsening
A=t ( -1 21525 1)
h? .

* The other approach to this problem is to do the
usual full coarsening, but to relax entire x-lines
(constant y) of variables simultaneously.

+ Consider an x-line equation specified by a fixed j:

Vi ﬁ

+H2+2eW,; v, =S, l<i<n-1

_vi,j—l —/

—Vioi,

2
— v QA28 v =R Y Y
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Why line relaxation works

Eigenvalues of the weighted block Jacobi iteration matrix:

A =1—2—C,0 sinz(z)+e(sin2(j—”))
. 25 {ﬂt) 2n 2n)))
sin +e

2n
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Semicoarsening & line relaxation Semicoarsening & line relaxation

* We might not know the direction of weak coupling
or it might vary over the domain.
* Suppose we want a method that can handle either
A’;_hlz(q 2;625 —1) or Ag_h12<—g 2;125 —a)

-1

The original grid. Original grid + Coarsening is
viewed as a stack done by deleting
- We could use semicoarsening in the x-direction to of "pencils.” Line every other
ho s o . . relaxation is pencil.
handle 47 & line relaxation in the y-direction to used to solve
take care of 4 é’ problem along
each “pencil”.
CU-Boulder 297 of 396 CU-Boulder 298 of 396
An anisotropic example What is smooth error?
- Consider - u,, - eu,, = f with u = 0 on the boundaries of the + Consider ¢ = 0.001 & suppose point Gauss-Seidel is
unit square, & stencil given by applied to a random initial guess. The error after
o . 50 sweeps appears as:
A= | - 24:625 -1 |

ot
o

0.0t

0.0¢

0.04

00

0 0.1 02 03 04 05 06 07 08 09 1
Error along line of constant x
oid
o1
0.0¢
0.06
0od

6T 62§ o7 05 05 47 05 69 1
Error along line of constant y

- Suppose that f (x,y) = 2(y - y2) + 2¢ (x - x2) so that the
exact solution is u(x,y) = (y - y2)(x - x).

* Note: If ¢ is small, then the x-direction dominates, while if
¢ is large, then the y-direction dominates.
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We experiment with 3 methods

+ Standard V(2,1)-cycling, with point Gauss-Seidel
relaxation, full coarsening, & linear interpolation.

+ Semicoarsening in the x-direction. Coarse & fine
grids have the same number of points in the y-
direction. 1-D full weighting & linear interpolation
are used in the x-direction, with no y-coupling in
the intergrid transfers.

+ Semicoarsening in the x-direction combined with
line relaxation in the y-direction. 1-D full weighting
& interpolation.
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How do the 3 methods work for

various values of ¢ ?
n=16

Asymptotic convergence factors of V(2,1)-cycles:

scheme | 1000 100 10 1 0.1 0.01 0.001 1E-04
standard method | 0.95 0.94 0.58| 0.13| 0.58 090 0.95 0.95
9

x-semi 094 099 0.98|C0.93» 0.71 0.28 0.07 0.07
0.04 0.08 0.08 .08/ 0.07 0.07 0.08 0.08

x-semi & line relax
H_J ~ -
Y
x-direction strong
why is this bad???

y-direction strong
| for ¢ <0.001

but degrades noticeably even at ¢ = 0.I0

Note: semicoarsening in x works

Poisson
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With semicoarsening, the
operator must change

* To account for unequal mesh spacing, the residual &
relaxation operators must use a modified stencil:

+ Note that, as grids become coarser, h, grows while
hy remains constant.
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A semicoarsening subtlety

* Suppose ¢ is small, so that semicoarsening in x is
used. As we progress to coarser grids, h, 2 gets small

but hy‘2 remains constant.

- If, on some coarse grid, h, -2 becomes comparable to
e h,?, then the problem effectively becomes
recoupled in the y-direction. Continued
semicoarsening can produce artificial anisotropy,
strong in the y-direction.

+ When this occurs, it is best to stop semicoarsening &

use full coarsening on any further coarse grids.
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7. Selected applications

7c. Variable meshes

* Non-uniform grids are commonly used for domain or
data irregularities or emerging solution features.

+ Consider how we might approach the 1-D problem
-u'(x)=f(x), O0<x<1,

u@=u@®=0
posed on the following nonuniform grid:
x=0 x=1
® - - = e —
Xo Xj-1 X Xje1 X,
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Building second divided differences

” - L] L)
Uitz = (Uj+1/z - UJ'-1/2)/hj
A
'S ~

[] - [} -
Uji1y2 = (UJ' - UJ>1)/"‘J>1/2 Uja/2 = (UJ'+1 - uj)/hj+1/2

Ujg u. \|’ u.
l
1

J j+1
@ @ L
g AN J
Y Y
hj% hj+1/2
\ J
Y
hy = (hyyz * hiy2)/2
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We need some notation for the
mesh spacing

Let n be a positive integer. We define the spacing

interval between X & X, ¢

hj+1/25xj+1_xj, J=0,1, .., n-1.
hj+1/2
x=0 — x=1
¢ ® o—@ @ = ——0
Xo Xjo1 X; X1 X,
CU-Boulder 306 of 396

The discrete differential operator

* Using 2"-order finite differences (& messy
algebra!), we obtain the discrete representation

_hh h o phy, b _ph, b _ ¢h . _
of ui_y + (o + B)uf = Bruf, =f; 1< j<n—1
h _ _h __

u, =u, =0

where
h 2 2

R i N L R
by (hff% th ) By (h_;-% * hni)

* Multiplying by (h;y/, + h;.;/,)/2 yields an SPD

matrix with stencil

1 1 N 1 1
A'= h h, h, h

il
Jt3
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Modify interpolation for variable h

+ We choose every other fine-grid point as a coarse-

gr'ld point: y ,

x{ X2j Xy
o - 0—C - o —
° - = - °
xg" x7 X

- In[x§, x5], linear means
v(x) = vah+ (vBrh- vZh) (x - xB)/(xh - xB).
- Plug in x = xI : writing v = T}, v"yields

2h
h2,+3/2" +hyi 12 Vit

h 2h h .
V2=V, V241 T , l<jen/2-1.
/ J J hyj iz + haojian J
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We use the variational properties
to derive restriction & A2"

2h h 2n 1,k
PR LY A Iy =501y)

- This produces a stencil on Q2" that is similar, but
not identical, o the fine-grid stencil. If the
resulting system is scaled by (h;;/, + h./,), then
the Galerkin product is the same as the fine-grid
stencil.

+ For 2-D problems, this approach can be generalized
readily to fensor-product grids. However, for
general irregular grids, AMG is a better choice.
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Proper linear interpolation is needed

simple averaging
VA= (v2h + vJ+1)/2

ol l ~

TOK if the point is here.

linear interpolation
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Tensor-product grids?
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7. Selected applications

7d. Variable coefficients

- A common difficulty is variable coefficients,
exemplified in 1-D by
- (a(x) u(x)) = f(x), 0<x«<1,
u@=u®):=0,
where a(x) is a positive function on [0,1].

+ We seek to develop a conservative, or self-adjoint,
method for discretizing this problem.

+ Assume we have available to us the values of a(x)
(a;. 1/2 = a(x;. 1)) at midpoints of the uniform grid
o+o+oeo+eo+—eo+eo+—e 110

h xh h h h

xO ] = 1 X]' xj +1 'xn
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Discretize using central differences
(cont'd)

To evaluate (au')lx;,,,, we must sample a(x) at the
point ;. 1,, & use second-order differences:

Ujr1 Yy Ujp —Uj—y

’ J ’ —
(@), == (@)l = p——

where -
aj 1 =alx; ).

Points used to

evaluate U’ at Points used to evaluate (..) at x;
Xjr1/2

o+—0o—+—eo+—eo 1+ 10+ 1+—01+0
xh

h h h xh
"0 -1 J+1 " 3150396
CU-Boulder 0

Discretize using central differences

We can use second-order differences to
approximate the derivatives. To use a grid spacing
of h, we evaluate a(x)u'(x) at points midway
between the gridpoints:

(au) e,y = (@)l g

2
Z + O(h”)

(a(x)u'(x))’

X

J

ﬁ Points used to evaluate (au') at X;

o+—o+eo+—o+eo+H—eo+H—e+——1+0
h h
'xﬂ

CU-Boulder 314 of 396

The basic stencil

We combine the differences for u' & for (au’) to
obtain the operator
0,1 (57) —o,

(a1 (23)) () = — 2 P

Uj—Uj—1
h

& the problem becomes

1 .
72 (7(},‘7_7%’[1,_[,1 + <(Lj7% +aj+%> uj — (Lj+%“7+1) =f 1<j<n

Uug = up =0 .
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Coarsening the variable
coefficient problem

* A reasonable approach is to use a standard multigrid
algorithm with linear interpolation, full weighting, &

the stencil
2h — 1 7&2,}1 a2h + a?h 7(121
AT = Ghy { j-% J-3 = J+5  i+3
where " “5'/41/2 + aélj+3/2
4Giv12=s 5

@ } @ ;
* The same stencil is obtained by the Galerkin relation.
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A variable coefficient example

+ Weuse V(2,1) cycle, full weighting, linear interpolation.
« Weusea(x) =1+ psin(knx) & a(x) =1+ p rand(x).

n=1024

a(x) = 1 + p sin(knx) a(x) = 1+ p rand(x)

p =3 k=25 k=50 k=10(;'

0 |0.085 0.085 0.085 0.085 0.085
0.25 | 0.084 0.098 0.098 0.094 0.083
0.5 |0.093 0.185 0.194 0.196 0.173
0.75 | 0.119 0.374 0.387 0.391 0.394
0.85 | 0.142 0.497 0.511 0.514 0.472
0.9510.191 0.681 0.69 0.694 0.672
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Variable mesh vs. variable coefficients
after scaling by m; = (h;.1/, + h.1,2)/2 & h

+ Variable mesh

1 1 1 1
h h h h
Ui_q + + Ui — ———Ui = N[5
1.1 J—1 }L, 1 h_ 1 J }l,, 1 Jtl ]'7fJ
J=3 J=3 Jt3 Jjt3

h

+ Variable coefficients

—|(—a. 1uj1+la 1+a 1 |u;—a. 1u; =hf;
h( j—3 7 ! <.7—§ itz ) ) I+l fi

+ Correspondence

1 aj-1/2 - 1* < dj+12

hisi h R h
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Standard multigrid degrades if
a(x) is highly variable
MG for variable coefficients is equivalent to MG (with
simple averaging) for Poisson's equation on a variable mesh.

-(au) =f @—@ @ @ @ @ @ @ L

u'=f @@ o0 o—0 0 — 090

But simple averaging won't accurately represent smooth
components if x4; , | is close to x}; but far from x4, , 5.

h h W
X2 X2 +1 )”21_j+2
@ @ @
2h 2h
Y Pl
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Pretend variability comes from mesh

) a, a, a, a b + 1
A= S ‘/75+ i, - 2 = h,] h 1 h 1 h,]
h h h h A "3
. h h
- We can solve for the mesh sizes:n ,=—, h  =—o.
/*E a Sa

* So linear interpolation yields

2 2h 2h 2h
hz_/+3/zvj +h2j+1/2vj+l GV Ty nVin

h o _
Vaji = h

212t h2j+3/2 Ay T 0505,

or, assuming that we've already inferpolated to
C-points 2j°& 2i+2, it can be rewritten as

a i+ a j+ a j+ a.Z
[ 2]hl/2 + 221/2]v;;j+1_ 2]hl/2 V;jl— ]}:35//2 ng_hn:a).
We just used operator interpolation!

Works for any stencil: [-o a+p -Bl.

CU-Boulder
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Outline

Chapters 6-10:

-V Nonlinear Problems
- Full approximation scheme
-V Selected Applications

Chapters 1-5:
-V Model Problems
-V Basic Iterative Methods

- Convergence tests
- Neumann boundaries

- Analysis
. . Anisotyopic problems
Y E-lerr';e::i;toﬂ:uﬁl%mework —D\Hr%b e meshes
) - Variable coefficients
- Coarsening

Algebraic Multigrid (AMG)

v Implementation . .
v Imp - Matrix coarsening

- Complexity Multilevel Adaptive Methods
- Diagnostics - FAC
-V Some Theory Finite Elements

- Variational methodology
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- Spectral vs. algebraic
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Operator interpolation
* Assume that the error is known on the coarse grid:

il il So we can assume that e is known
on the fine grid at F-points itl.
as We then just need to relate e, to e,,;.
X X i-le=— i<=—=i+]
Our task!

Assume smooth error with the ansatz that r = 0.

Applying this at pointi: -oae_+(a+ple -Pe, =0.

Solving fori:

.« B
e = e 4+
"o+ a+p

Accidental: F-points connect only to C-points.

el+1 .

What do we do
otherwise???
322 0£ 396
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8. Algebraic multigrid (AMG)

unstructured grids, variable coefficients,.. assume SPD A

® Automatically determines coarsening.

® AMG has two distinct phases:
—setup phase: define MG components.
—solution phase: perform MG cycles.

® AMG differs from geometric MG:
—fix relaxation: point Gauss-Seidel.
—choose coarsening: "grids” & prolongation, P.

® AMG principles:
—algebraically smooth errors have small residuals: Ae = 0.
—"strong"” connections mean good neighbors: good C-points.
—smooth error is locally almost constant: e ~ ¢ for this A.
—prolongation must match "smooth” error: e € range(P ).
—variational conditions apply: given P, set R=PT & A.=RAP.
—only real task is fo compute C & P: write e; in ferms of e,.
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Why AMG?

- Even with
1 oL this nice
. -1 .
A= 4— 1 @ stencil, the
: geometry
. _| can give us
l l trouble!
Even if you
could choose 1.
good C points, ( 1 ]
how would you
get the weights?
CU-Boulder 3250396

AMG has two phases

® Setup Phase |
- Select coarse “grids,” Q""" ,m=1,2, ...

- Define interpolation, m

m+ 1> m=1,2,...

- Define restriction & coarse-grid operators,
1 T
’11111+ =([’11111+1), Am+l= ,?11+1Am];z;+1.

® Solve Phase
Standard MG processes: V-cycle, W-cycle, FMG, FAS, ...

® All AMG processes parallelize well, although coarse-grid
selection must be done with care.
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6raph Laplacian

7’\/ Pf 'g e
e
o

t

0.9

0.8

07 |

06 &

0.4~

4 links | | 10 Jinks

031

021

01F
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AMG fundamental concept:

smooth error = "small” residuals/energy

+ Error propagation via weighted Jacobi smoothing:
ekl = (T - wD1A) ek.
+ Error that is slow to converge satisfies
(I-wD!A)exe = wD!Ae=x0

slr20

A little more precisely, assuming that D % I, then
slow-to-converge error has relatively small energy:

<Ae,e > <« <e,e>||Al|
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AMG uses strong connection to
determine MG components

+ Smoothing assumption:
r20 or <Ae,e>=0.
- We say that i is strongly connected to j if

» Zero-row-sum "M-matrices" actually satisfy

« So smooth error is moré\or less constant

along STF‘Ohg connections. We really mean matrices that

have stencils like we've seen.
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Some useful set definitions

- The set of strong connections of a variable u,,
that is, the variables upon whose values the value
of u; depends, is defined as

S; = {.7' t—ai; >0 Ti;({—aik}}.
+ The set of points strongly connected to variable
u, is denoted S} = {j i€ Sj}.
*+ The set of coarse-grid variables is denoted C.

*+ The set of fine-grid variables is denoted F.

* The sef of interpolatory coarse-grid variables
used to interpolate the value of the fine-grid
variable u, is denoted C..
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Operator-induced interpolation

assume a graph of A & given coarse points

. C-points j, k
. F-point i
. F-point f

i
ri=0 = a;e+q;e+a;e+ape=0.

To define e; in ferms of e; & e, , we must eliminate e;.

J

Erase it?!
Use the smoothness principle that e is locally almost constant.

e;-e = (a; + agle; + a;e;+aye =0

= F-points determined by C-points!
We'll instead replace e by e; & e, in proportion to ag; & ag.
CU-Boulder 33001396

Choosing the coarse grid

+ Two Criteria:

- (C1) For each i €F, every j €S, should either be in C
or strongly connected to at least one point in C,.

- (€2) C should be a maximal subset with the property
that no C-points are strongly connected to each other.

+ Satisfying (C1) & (C2) is sometimes impossible.

+ We use (C2) as a guide while enforcing (C1).
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Selecting the coarse-grid points
choose C-point to allow most F-points (“value")

C-point selected
(point with
largest “value")
Neighbors of
C-point become
F-points

Next C-point
selected (after
updating "values")
F-points
selected, etc.
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Prolongation is based on smooth error,
strong connections (from M-matrices)

Smooth error is given by:
r=age; + Z a,e; =0.
jeCUF

Prolongation :

e, ieC

i

i Zwikek, iel

keC

connections

=== strong to C
= strong to F
[ NN NN weak

Actually, we want to allow for the possibility
CU-Boulder that we don't interpolate from all of C... 3350396

Sample grids for the Laplacian
5-pt FD, 9-pt FE (quads), & 9-pt FE (stretched quads)

9-pt FE
(stretched quads)
r

—1 -1 -1 -1
o EE
-1 -1 -1 -1

5-pt FD -1 -4 -1

2 8 2
(2 )
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9-pt FE (quads)

Prolongation is based on smooth error,
strong connections (from M-matrices)
Ci === Strongly connected C-pts.

D. {_ Strongly connected F-pts.
I'%°°° Weak connections.

Smooth error at i means that

ae = _zkeq ae, — ZjeD_ aje;
weak so

no worriesl! (Cl) =>j :
soe; % e fork

I

we canh write e

i

as a properly-scaled dgtefre—er

only if iis s‘rrléngly
g keC; a €y connected to j , but
o i a weak connection
one of these ZkeC, Aj is no worriesl!
must be strong
Now we just substitute to get interpolation weights!
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Interpolation weights--the algebra

a.e = —Zkeq a,e, — Zjeu,. ase,
+

2 keC, Ay ag

e, —22 ¢
IR W
kec, Jk lec; !

7

1 + ajk
Wik = —— | Gik ) [ e——
= a \ T e U
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Real setting

Suppose F-points are usually connected to other F-points.
How do we eliminate these F-F connections?

’ We could just cut it.

® - F-point But then we get a stencil
® = C-point -1 that says ei = Z(!5) ex.
R
-1

1ok, so just change aii.

o
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Ideal setting

Suppose F-points are only connected to C-points.
Interpolation only care about smooth e, so assume r; = 0.

The stencil tells us what e; is
in terms of ex at the C-points.

® - F-point
poin Here, ei = Z(%) ex.

@® = C-point 1

O
1

We often just show
‘ connections without
minus signs or diagonal.
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Can we do better?

+ We now have a direct way to determine interpolation.

« We just clip F-F connections & then adjust the diagonal
(denominator) to make the weights sum to 1.

+ Observe that what we are doing here is trying to write
an F-point as a combination of neighboring C-points ina
way that reflects the nature of smooth error.

* But if we assume that F-points are in the minority, can
we use this our crude direct interpolation idea to
eliminate an F-F connection by replacing the offending F-
point with a linear combination of C-points ini's
neighborhood (Ci)?
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Example of AMG compution of P

® - F point S 2
® = C point .\ , l
e = Z( ) ek

> % 2.
1 1/2

/ ‘(— 1/2 !

1 1 1
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AMG performance:
Sometimes a success story

* AMG performs extremely well on the model problem
(Poisson's equation, regular grid): optimal convergence
factors (e.g., 0.14) & scalability w.r.t. problem size.

* AMG appears to be both scalable & efficient on
diffusion problems on unstructured grids (e.g., 0.1-0.3).

* AMG handles anisotropic diffusion on structured &
unstructured grids relatively well (e.g., 0.35).
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AMG setup costs

* Many geometric MG methods need to compute prolongation
& coarse-grid operators.

* The only additional expense in the AMG setup phase is the
coarse-grid selection algorithm.

+ So AMG's setup phase is usually only 10-25% more expensive
than in geometric MG.

+ But AMG is more robust in ferms of geometric difficulties.
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How does it perform (vol I)?
regular grids, plain, old, vanilla problems,
unit square, n = 64, Dirichlet boundaries

* Laplacian: —u, —u, =0

(*1 , -1 ) Convergence | Operator Time
! ! Stencil per cycle Complexity | per cycle
R \5—pf 0.054 2.21 0.29
( :} fl - >\5-pf skew 0.067 212 0.27
9-pt (-1,8) 0.078 1.30 0.26
-1 -4 -1 _9-pt (-1,-4,20) 0.109 1.30 0.26
(=)
* Anisotropic 5-Point Laplacian: —&u, —u, =0
€ 0.001 | 0.01 0.1 0.5 1 2 10 100 | 1000
Convergence/cycle{0.084 | 0.093 | 0.058 | 0.069 | 0.054 | 0.079 | 0.087 | 0.093 | 0.083
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How does it perform (vol IT)?

structured meshes, rectangular domains

5-point Laplacian on regular rectangular grids
Convergence factor (y-axis) plotted against number of nodes (x-axis)
0.16 -
0.14 - _ s ot

0.12
0.1 -
0.08 -ff 0.082
0.06 -
0.04
0.02
0

—8 0.146

0.055

0 500000 1000000
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How does it perform (vol IV)?
—V+(d(x,y)Vu)=0 on structured, unstructured grids

o.4a
o0o.35
o.3
o.25
o.2
o.15

o.1
0.05S
o

16642 points 66049 points 13755 points 54518 points
structured structured unstructured unstructured

Problems used: “a" means parameter ¢ = 10, "b" means c = 1,000
1.0 0.125< max{lx-0.5, |y-0.5|} <025

6 d(x,y) = 1.0+c|x-p| 8 dxy) ={

2 2
% d(x.y) ={1.0 0.125s \(x=0.5)2 4 (y-0.5)° <0.25

e ¢ otherwise

c otherwise

7 dixy) = |10 ¥505

il

CU-Boulder

x >0.5
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How does it perform (vol III)?

unstructured meshes, rectangular domains

Laplacian on random unstructured grids (regular
triangulations, 15-20% nodes randomly collapsed into neighboring nodes)

Convergence factor (y-axis) plotted against number of nodes (x-axis)
0.3 -
0.25 - 0.253
0.2 -
0.175

0.15 -

0.111
0.1 4 o097

0.05 -
o ‘ ‘ :
o 20000 40000 60000
CU-Boulder 346 of 396
How does it perform (vol V)?
Laplacian operator, unstructured grids
Convergence factor
0.37
0.2754
0.1% 0.1002
0.05
GO 50000 100000 150000 200000 250000 300000 350000
Gridpoints
Now for a glimpse at several other AMG topics..
348 of 396
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AMG for systems

* How can we do AMG on systems?
An A \(u)_(f
Ay Ay |V g
* Naive approach: "Block"” AMG (block Gauss-Seidel,

using scalar AMG to “solve” at each cycle)
-1
ue (A4 (f —41v)

v (Ady) g - Ay u)

Great Ideal Except that it often doesn't work!

Block AMG doesn't account for strong inter-variable coupling.
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Adaptive AMG (0:AMG)
to broaden applicability

adaptive interpolation

based on discovering the sense of smoothness

+
adaptive C-point choice

auto-determination of good coarse points
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AMG for systems: A solution

* To solve the system problem, allow interaction between
the unknowns at all levels:

Kk k
v (A An X v, O
4" = k k & Ik+l = k .
Ay Ay 0 (frs)

* This is called the “"unknown-based” approach.

+ 2-D biharmonic (-A)%u = f, Dirichlet & Neumann
boundaries, unit square, uniform quadrilateral mesh:

0.125 0.0625 0.03135 0.015625
0.22 0.35 0.42 0.44

Mesh spacing

Convergence factor
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Standard interpolation

Standard AMG collapses stencils by assuming smooth
error is locally constant (Poisson “sense of smoothness”):

Zkeq 4
e = ="
j 2
a .
keC; Jk

a6 = _Z rec, 4 Z jen, %ii€i

Strong C F & Weak C
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Isn't standard interpolation OK?

* Suppose someone tried fo make A "nice” for relaxation
by scaling the diagonal so it's the identity:
A < DV2ADY2, D = diag(ay).
* Relaxation still gives small residuals:
Ae = 0.
* But
Ae = (DV2ADV2)e 0 = A(DV2e) » 0 = e # D2¢.

« So "smooth” here means g; # ¢ /a; . This could vary a lot!

How can we discover what smooth vectors actually look like?
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(; B ;) Adaptive C-point choice
I Systems???
Irregular grids???

Variable coeffs???

* What does a "good” C mean?
+ We want each i in F to "depend” on C :
e, given vke C = e, well determined vicF.

* Let's look at the matrix: A_ ( Arr Are
Acf Acc ’

* What do we know about smooth e? r, =A e, +A e =0.

- Given e, is e; well determined? Does r;= O determine e, ?
- Given e, when does r; = O not determine e;?

- What if A is singular?

- Then e; cannot fully dependone,.

- We want A to be well conditioned!!l How can we tell?
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Discovering smoothness

Relax on Ax = 0 Ill

+ What if we found a smooth error x that's far from c ?

- If, say, x; = 1.4x, for j €D; & all ke C;, then we could set

e — (k%ciaik l4e, )/(kgciajk ).

- If x;/x, varies with k, then it's just a bit more complicated.
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Compatible relaxation (CR)

To ensure that C is a really good set of coarse grid points,
we want Aff to be well conditioned. Thus, we can assess
whether we have good C-points by "CR":

relax on A x; = 0.

Fast CR means that F depends on C in the sense that
smooth error (r; = 0) is quickly recovered from C.

Fast CR also has the benefit that the F-point residuals
can be made really small after F-point relaxation.
We can also show that fast CR means that a P exists that

gives good MG convergence: -Ag; Ag. .
This P isn't local; hopefully, CR can give us a good local P.

Problem: If A, isn't well conditioned, what then???
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Outline

Chapters 1-5: Chapters 6-10:

-V Model Problems
-V Basic Iterative Methods

-V Nonlinear Problems
- Full approximation scheme
- Convergence tests -V Selected Applications

- Neumann boundaries

- Analysis
-V Elements of MulTi% mewor.k D’;"ﬁ%’; opic phroblems
. & e meshes
- Relaxation
. - Variable coefficients
- Coarsening

R Algebraic Multigrid (AMG)

*y Implementation ) )
v Imp - Matrix coarsening

- Complexity *  Multilevel Adaptive Methods
- Diagnostics - FAC
"V Some Theory Finite Elements
- Spectral vs. algebraic - Variational methodology
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Model 1-D problem
-u'(x) = f(x),0<x <1
u@)=u(®)=0
h h h h h h h h h h
QF X X[ X, X)X, XJ X/ XX,
o 1
-2 h h h _ rh .
h (—’UJZ‘_l + 2’UJZ — ui_l) = f’L y 1 S (2 S 7
1
uh = uh =0 h = —
0 8 ) 3
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9. Multilevel adaptive methods
fast adaptive composite grid method (FAC)

two-spike problem

Local enhancement to resolve
special regions of activity or interest.

CU-Boulder
Local refinement
suppose f(x) has a spike at x = 3/4
but is smooth elsewhere
Unneeded y =f(x)
resolution
& | <—>
acqyracy. X

coarse grid

CU-Boulder
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9 fine grid (e = interface)
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Strategy

Recognize that there's little value of having the fine grid
in the smooth region, [0, 1/2].

Start with uniform grid & standard MG, then:
- first eliminate relaxation in [0, 1/2].
- then eliminate intergrid transfers & residual calculations.

Then interpret this process via the composite grid
(= 2h-points in [0, 1/2] + h-points in [1/2, 1]).

We'll try absurdly hard to eliminate work @ x = 1/2,
but we have in mind multi-dimensions & smaller patches.
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Eliminate relaxation
so rh changes only on 2h vt changes only here

H h h h h
nhotation Q Xox4a
h - (yh 2h  \2h 2h 2h Once & forall:
vh = (v. Q" x X X X X )
vi") 0 1 2 3 4 it changes only

Initidlize vi= 0 & f2h& (F + 26,0 + £,h)/4. € 5"
Relax on vh on the local fine grid (x5", X ", x,").  Commm—
Compute rh = f1 - Ahvh (@x3h-x,") & transfer to 2h:
f2h & (rsh +2rh +rh)/4 & 20 & (rh + 2rh + 1 R)/4.
Compute an approximation, v?", to the solution of the 2h
residual equation, A2"u?" = f2h,
Update the residual at x,2" for later cycles:

flzh & f12h _ (_ V02h + 2V12h _ V22h )/(Zh)z.

Correct: vh €& vh+Thy2h >

cycle
Why save V" outside of local region? 363 0 396

- Compute rh = fh - Ahvh (@x,"-x,") & transfer to 2h:

- Compute an approximation, v2", to the solution of the 2h

- Correct: vh €& vh+ Thv2h (@x;h-x,M). >

Local-Relaxation/Global -Correction MG

— — WARNING: You won't get zero residuals on all of grid h. < «—
Remember that the concept is right here, but we need to

make it efficient--without changing the resultsl!!!
. . ) Relax only in the local region.
Ndforesicteac théaithal glabsd gridsas usugl. - 1/2 becomes a boundary point.

@J (OX

Compute & transfer

residuals.
We start by using local relaxation &
eliminating unnecessary residual transfers.
To save all of the work of computing & transferring residuals
& corrections in regions where they don't change,

we need some messy ALGEBRAI
CU-Boulder Trust me on the more messy stuff.. 362 of 396

Transfer & add
correction.

2h hgph
f 2" involves r;" & r,",

so we "need" v," -vh.

Store v only @ x;"-x." & save v," on 2h (call it w,?").

- Initialize v" = 0, w,2"= 0, & f2h & (f" + 2f," + f;h)/4.

Relax on v" on the local fine grid (xg", x ", x;1). — mm——
f2h& (rh +2rh + 1" )/4 & 20 & (rgh + 2rh + 0P )/4

residual equation, A2hu2h = £2h,
Update the residual at x,2" for later cycles:
f12h & f12h _ (_ VOZh + 2v12h _ V22h )/(Zh)z.

Accumulate the 2h approximation: w2 € w,?h+ v,2",

cycle
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[ ]
li
X

h

X} X1 X,
Q" X X X Compute change in ry" on 2h.

2h residual @ x,2" = g,%" - (- w2+ 2 v," - v, ")/ (2h)?,
where g,2" = (f;" + 2f," + f,")/4. (Messy algebral)

- Initialize vi= 0, w?"= 0, & f2" & (f," + 2f," + f;")/4.
- Relax on vh on the local fine grid (xg", X "', x,1). — Cmm—
+ Compute the right sides for 2h:

f2h& g2 - (-wh+ 2 v - v )/ (2h)? &

f2h& (rgh + 2 +rh)/4.
- Compute an approximation, v2", to the solution of the 2h

residual equation, A%hu?h = f2h
- Update the residual at x,2" for later cycles:
f12h & f 2h ( Vo zh 4 2 V 2h V22h )/(2h)2
. Accumula’re the Zh appromma’non weh & wh+v2h, ;
.Cugoul eeCJr Vi v+ T Inv2h (@X4 X7 ) 365 of 396

minate the rest
X" X r;" doesn't change on h.
x§ xj

h h

cycle

Finite Element Local Refinement

continuous piecewise linear:
1 at node i=5,6,7 only,

h
€
‘ f ® 0 @ all other nodes.
i:5 h
€6)
l i=6 "
h
£@)
i=7
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Interpretation
composite grid
QF o k%

©)
[94N0) X X X 0
Q0 X o k k k (O

c c c ,€ ,C € ,C
VO V1 V2 V3 V4 V5 V6

What equation in v are we solving?
(- Vo + 2V - v )/(2h) = £ = (F+ 2,0+ £50)/4
} usual
(-ve +2ve-ve )/h =fc =fh, i=345

(- vi€+ 3v,° - 2v50)/(2h)% = f,¢ = (fh + 2 f,1)/4 | @interface

— — The key is to treat the interface correctly. — —
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Local Fine-6rid Refinement

I

2h
J/\ S~ "
A HZhUHh

W

oscillatory

smooth
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Abstract FE relaxation & 2h correction

e Minimize F(u" + u?") over u?hin H?h,
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Two-spike example (Laplacian)

Global grid h & one double-patch refined level h/2.
+ V(1,0)-cycles, Gauss-Seidel.
+ Asymptotic convergence of the solver.

+ Scaled L? discretization error estimate.

Global h | Convergence factor | Discrete L? norm of discretization error
1/32 0.362 2.34e-2
1/64 0.367 5.742-3
1/128 0.365 1.43e-3
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Issues

Adaptivity pox R KX
Error estimates Sl
Norms (proper scaling) box ok fok ok
Mul‘riple dimensions Dok ok ok ok
- Slave points ¢ M M
- More complicated stencils
Data structures
Parallel algorithms (AFAC)
Time-space
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Outline
Chapters 1-5: Chapters 6-10:

-V Model Problems -V Nonlinear Problems
-V Basic Iterative Methods - Full approximation scheme

- Convergence tests -V Selected Applications

- Analysis - Neumann boundaries
V Elements of Mutiltomework D’",'iié:* opic problems

- Relaxation ) bfe meshes

. - Variable coefficients
- Coarsening

v Algebraic Multigrid (AMG)

v Implementation . .
v Imp - Matrix coarsening

- Complexity -V Multilevel Adaptive Methods
- Diagnostics - FAC
-/ Some Theory +  Finite Elements
- Spectral vs. algebraic - Variational methodology
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10. Finite elements
FE, a variational discretization methodology

FD methodology

FE methodology

method method method

FD: differences at nodes & truncation error.

FE: weak form on discrete functions & approximation property.

Other methods: finite volume, collocation, spectral, ...
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Localize

.

What choice
do you have?

— —SECOND KEY POINT« «
FE functions are localized to ensure a sparse matrix.
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Discretization

This is a subspace view.

Thesi\thigstate fungtsee?are
in the space of solutions.

-~

Discrete because they
are determined by a
finite number of nodes

But this is gobal.
You're eyes see rises
& drops coming.
We want to capture
local physics.

— —FIRST KEY POINT« «
FE sees grid points (nodes or dofs) e
only as characterizations of

continuum functions.
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Continuous piecewise linear functions

How do you take
22 -u"=f 222 2" derivatives of u"?

4

How can you eliminate derivatives?

— —THIRD KEY POINT« «
FE integrates away 2" derivatives.
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Weak form!

—u"=f u = trial function
—u"v=fv Vv v = test function

f(—u ")vdx =j fvdx vy

=
=

How is this weaker?
= J.u‘v'dx —u'v Il):J.fvdx
=
=

Hint: 2 ways.

Ju'vix = Vv 31(0)=v(1)=0
Yvav(0)=v(1)=0

\llll\ N U How would we discretize this?

7 Need basis for space of admissible u" & v.
HIII = can actually be reversed to

< if uis smooth enough.
cusouder 90 the weak & strong forms are “equivalent”. 377,306

Weak form & Galerkin discretization
@' Vv)=(f,v) Vv3v(0)=v(1)=0.

(Zjuj?s("j) Y= (f,0) Vv 3 1(0) = v(1) =0.

N\

h  h / J .
(Ejulg(])"g(i)'): (f’g(ll‘) VI.
h h h h .
2,-(8</'>"£<j> i =(f.€; Vi.

So the unknown is u" = (uh)

Ahuh — fh

’

& the right side is

the matrix is

A =(a)=(cel ety ) | = ()= ()]

ij i
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Representation
a basis of “hat" functions
sg) is
continuous piecewise linear
&) & 0 at all nodes except
node i where it's 1.

i
Any continuous piecewise linear
function can be represented by

_ h.h
Now we're back to

using node values.
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2D FE constructs i /o
function ®
Assume that Q is the unit square. ;
Consider an nxn grid of square "cells".
Continuous piecewise bilinear
elements:  H" C H'(Q). e

I
I
I
|
I
I
|
:
[ -4 -
I
I
I
I
I
I
I
I
I

Each u" in H" is determined by its node [ .
values. This is how we'll represent them! |
Within each square:
uh=axy +bx +cy +d i
(u" is linear in each coordinate direction).
If u" on one side of an element matches uh |
on the other at the nodes, then we want fo
know that it matches on the common edge | /
so that u" is continuous: we want to know .,
that specifying a piecewise bilinear S
function at the nodes gives us continuity. T
CU-Boulder Why do we care??? 380 of 396




Conﬂnui'ry Weak form

If *+ The Gauss Divergence Theorem & homogeneous
uh = axy + bx + cy + d Linearll boundary conditions yield
in this cell, then u" = (ay, + b)x + (cy, + d) (Lu, v) = (- U - U, V) = (-V2VU, V) = (Vu, V).
on thisy = y, edge. * Note: W{”»‘J
u
(Vu, W) = Jo(uv, + u,v,)dQ. '
* So the problem becomes
X
> So uMis linear on the edge. (Vuh, wh) = (f, V) Y vhe HP
Same on this cell. If uh above & below the edge or
have the same values at the e, Lo(uivh + u;‘,v;‘)dQ = [, fvhdQ v vh e Hh

then u" must be the same
linear function on the edge.
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Towards The ma‘rrlx equation The matrix equation
for nodal values
(V" Wh) = (F, Vi)V vhe Hf Ahyh = fh
where

Using u“(x,y) = ufl efyy (x.y) & choosing v/ = e,
(V J (é) f, v k l( ) u" = (u D & "= (h*f(x)
=y ufi (Ve Vet = (F, €ay) .
Matrix terms (Vey;), Ve, are O when & the matrix is given by the stencil

i)

li-k|l or [j-1] > 1
W . 1 -1 -1 -1
* Ve compute A== —1 8 —1 |. stiffness matrix
(Vs?ij), Vs?ij)) =8/3 & (VE?U-), Vs?i :ljzl)) =-1/3. tJ 3 1 -1 -1

Assume f is fairly smooth locally: |
(f. &) = Jof efayd® & h2f(x). i
F= () & 7= (WF(xy) (mass matrix)
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CU-Boulder

* Model problem @ C %2

Some matrix properties

!
Ar=>| -1 8 -
321 a1 4

* Symmetric! ij "reaches” to ixlj+l as i+lj+l to ij.
* Singular? A"1=07?! Depends on boundaries!

Dirichlet west boundary: 0
1 -1 1
AZ. =A]—h == 8 -1
* Positive definitel I3 a4

Diagonally dominant (strictly so @ boundaries).

But now we need to understand the PDE better,

starting with choosing our universe of functions...
385 0f 396

(Vu, W) = (£, V) FE twin towers (Vu, Vu)/2 - (F, u)
weak form VS. functional

Possible because,

Duality: Solving Lu = f is
L is self-adjoint.

Lus-u,-u,=f inQ equivalent to minimizing
u=0 onaQ the weak functional

F(u) = “(Lu, u)"/2 - (f, u)

= (Vu, vu)/2 - (f, u)
* Short story:
1s* derivative test
VF(u)=Lu-f =0

2" derivative test
F'(u)=L>0
This is formal:

Sobolev spaces:

L2(@) = {u: fou2dQ < =}

Hol(@) = {u: u, u,, u, e L¥(Q), ul,, = 0}
(u,v) = Jouvd@

L is self-adjoint positive definite (more later):
(Lu, v)" = (Vu, V) = Jo(uv,eru v )de = *(Ly, u)”
“(Lu, u)" > 0 if uz0: fo(uZ+ud)dQ = u=c, but u| ,,=0.

Lu is not defined

We use “(Lu, u)" for simplicity,
on all of Hy(Q).

but we really mean (Vu, Vv).

CU-Boulder
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CU-Boulder

A word about Sobolev spaces

We're mucking about with forms like [, (u,v, + uyvy)dQ, so we need to know
that derivatives of functions in our universe can be multiplied together &
integrated. It's enough fo have [(u,?+u ?)dQ < =, so our universe is
Ho'(@) = {u: u, u,, u, € LA(Q), ul,q = 0}, where L¥(Q) = {u: Jou?dQ < =},

We want what we compute to get close to what we want, so we're
concerned about convergence in our universe: we need to know that limits
of things that satisfy [,(u2+ uyz)dQ < oo also satisfy it, that is, stay in
our universe (completeness). Even if you start with nice continuous
differential functions, you are led to some strange ones in your space.
Think of L3(Q) = {u: J,u?dQ < «}. If u = 0 except at finitely many points
(say,u(i/n, j/n)y=1fori, j=1,2,.,n), then [,u?dQ = 0, so u="0"! This is
true for any finite n, so it's true for a countable infinity of nonzeros!

\ This is what
_"0" looks like!
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Long story...
dropping " " from (L-, -) for simplicity

Using symmetry & linearity of L & bilinearity of the inner product:
Flu+v) =(Lu+v),u+v)/2-(f,u+v)
= (Lu, u)/2 + (Lu, v) + (Lv, v)/2
-(f,u) - (f.v)
= F(u) + [(Lu, v) - (f, V)] + (Lv, v)/2.
Suppose u minimizes F but [(Lu, v) - (f, v)] < O for some v. (Just flip
the sign of v for the case [(Lu, v) - (f, v)] > 0.) Now replace v by ev:
F(u+ev) = F(u) + e[{[(Lu, v) - (f, )] + &(Lv, v)/2}]].
Small enough €>0 means [(Lu, v) - (f, v)] + e(Lv, v)/2 < O, which leads
us to conclude that F(u + ev) < F(u), a contradiction.
This contradiction shows that (Lu, v) - (f, v) must be O for all v.
Since this argument can easily be reversed, we thus conclude that

Flu+v) 2Fu) VveH Q) < (Luv)=(f,v) VveHgl(Q).
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Minimizing F via Rayleigh-Ritz
F(u) = (Lu, u)/2 - (f, u)

* Discretize by minimizing

F(uh) = (Luh, uh)/2 - (f, uh)

over uhe H,

+ Same as Galerkin that solves
(Luh, vh) = (f, V1)

Y vh g HM

Basis: &fy;) is the element of H" that

equals 1 @ node ij & O elsewhere.

- Expansion: u"(xy) = % u

- Old problem: What is Lu"= - uf, - uh 272

h
ij

ey (Xy)-

CU-Boulder

(Luh, vh) = (vuh, vvh)

Abstract FE coarsening

again with focus on functions

389 0f 396

* Coarsening involves a “global” change: u" < uh+w?" for
some coarse-grid function w2,

* Use FE principle of minimizing F(u" + w?") over w?":

F(uh + wh) = (L(uh + w?h), uh + w2h)/2 - (f, uh + w?h)
= F(uh) + (Luh - f, w?h) + (Lw2h, w?h)/2.

* Let w?" be the root of the gradient of this quadratic

But how do we pick w?"22?

functional w.r.t. w?". This is tricky because you need to

write the gradient as a function in the subspace H?".

We go instead from abstract functions to nodal vectors...

CU-Boulder
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Abstract FE relaxation

» Relaxation involves “local” changes: u" < u" - s ¢, for some

h = ch
scalar s & €" = ¢fj;).

CU-Boulder

Concrete FE coarsening: I

now with focus on nodal vectors

But how do we pick s ?2?

* Adding nodal representations of v" & v2":

v2h(x,y) - Zij VZhi' €2h(.-j)(X,Y)

* We should be able to do this because v2" ¢ H2h c Hh,

o Cell “2is 2j+":

CU-Boulder

- h ch
= 3 v e (xy) 222

2i 2) < ij

39V ot 390

(sum over 2h indices

f— 2h nodal values < evenh md'ces)

h nodal values

vy, 2 < VZh'J'
- (VZhiJ +y2h
Vg = (V¥ + v ) 2
Vg 25417 (Vthj Ve
* VZhi+1 j+1)/4

h
Vo2t 2

v2h

(sum over h indices)

Bilinear interpolation! .o, ..o



Concrete FE coarsening (cont'd)
Ahyh = £

* Solving this matrix equation is equivalent to minimizing
Fh(Vh) = (Ah Vh, Vh)/z - (fh, Vh) (parens here mean Euclidean norm)
over vl e H". So how do we now correct v"2??

« We minimize Fh(v" + I} v?) over v2he H2h:
Fh(vh + I} v2h)

= (Ah(vh+ T v@h), vh+ TH v2hy/2 - (fh, vh + T v2h)
variational conditions

= Fh(vh) + (AZhy2h y2h)/2 _ (f2h y2h) f2h Izh;-(fh_ AR yh)
o= TN
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Multigrid rules!
We conclude with a few observations:

o We have barely scratched the surface of the myriad ways
that multigrid has been, & can be, employed.

o With diligence & care, multigrid can be made to handle many
types of complications in a robust, efficient manner.

o Further extensions to multigrid methodology are being sought
by many people working on many different problems.
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Outline
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- Neumann boundaries
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. 9
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-V Finite Elements
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Multigrid/multilevel/multiscale
an important methodology

Multigrid has proved successful on a wide variety of
problems, especially elliptic PDEs, but has also found
application in parabolic & hyperbolic PDEs, integral
equations, evolution problems, geodesic problems, ...

It can be optimal, often O(# points).
It can be robust in a practical sense.

It is of great interest because it is one of the very
few scalable algorithms, & it can be parallelized
readily & efficiently!

But multigrid can also be a real paini
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